Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096501    DOI: 10.1088/1674-1056/ad57ae
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate

Dong-Sheng Chen(陈东升)1, Ting-Ting Miao(缪婷婷)1,†, Cheng Chang(常程)1, Xu-Yang Guo(郭旭洋)2, Meng-Yan Guan(关梦言)1, and Zhong-Li Ji(姬忠礼)1
1 Beijing Key Laboratory of Process Fluid Filtration and Separation, College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China;
2 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China
Abstract  The heat transfer and stability of methane hydrate in reservoirs have a direct impact on the drilling and production efficiency of hydrate resources, especially in complex stress environments caused by formation subsidence. In this study, we investigated the thermal transport and structural stability of methane hydrate under triaxial compression using molecular dynamics simulations. The results suggest that the thermal conductivity of methane hydrate increases with increasing compression strain. Two phonon transport mechanisms were identified as factors enhancing thermal conductivity. At low compressive strains, a low-frequency phonon transport channel was established due to the overlap of phonon vibration peaks between methane and water molecules. At high compressive strains, the filling of larger phonon bandgaps facilitated the opening of more phonon transport channels. Additionally, we found that a strain of $-0.04$ is a watershed point, where methane hydrate transitions from stable to unstable. Furthermore, a strain of $-0.06$ marks the threshold at which the diffusion capacities of methane and water molecules are at their peaks. At a higher strain of $-0.08$, the increased volume compression reduces the available space, limiting the diffusion ability of water and methane molecules within the hydrate. The synergistic effect of the strong diffusion ability and high probability of collision between atoms increases the thermal conductivity of hydrates during the unstable period compared to the stable period. Our findings offer valuable theoretical insights into the thermal conductivity and stability of methane hydrates in reservoir stress environments.
Keywords:  methane hydrate      molecular dynamics      thermal transport      triaxial compression      structural stability  
Received:  23 April 2024      Revised:  27 May 2024      Accepted manuscript online:  13 June 2024
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  64.60.-i (General studies of phase transitions)  
  91.50.Hc (Gas and hydrate systems)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52376083 and 51991362).
Corresponding Authors:  Ting-Ting Miao     E-mail:  mting@cup.edu.cn

Cite this article: 

Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼) Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate 2024 Chin. Phys. B 33 096501

[1] Sloan E D 2003 Nature 426 353
[2] Ye J, Qin X, Xie W, Lu H, Ma B, Qiu H, Liang J, Lu J, Kuang Z, Lu C, Liang Q, Wei S, Yu Y, Liu C, Li B, Shen K, Shi H, Lu Q, Li J, Kou B, Song G, Li B, Zhang H, Lu H, Ma C, Dong Y and Bian H 2020 China Geol. 3 197
[3] Chibura P E, Zhang W, Luo A and Wang J 2022 J. Nat. Gas Sci. Eng. 100 104441
[4] Yu Y S, Zhang X, Liu J W, Lee Y and Li X S 2021 Energy Environ. Sci. 14 5611
[5] Makogon Y F, Holditch S A and Makogon T Y 2007 J. Pet. Sci. Eng. 56 14
[6] Liang Y, Tan Y, Luo Y, Zhang Y and Li B 2020 J. Cleaner Prod. 261 121061
[7] Song B, Cheng Y, Yan C, Lyu Y, Wei J, Ding J and Li Y 2019 J. Nat. Gas Sci. Eng. 65 197
[8] Chen C, Zhang Y, Li X S, Li G and Chen Z Y 2024 Energy Fuels 38 5928
[9] Guo P, Pan Y K, Li L L and Tang B 2017 Chin. Phys. B 26 073101
[10] Cortes D D, Martin A I, Yun T S, Francisca F M, Santamarina J C and Ruppel C 2009 J. Geophys. Res. Solid Earth 114 B1103
[11] Kim Y J and Yun T S 2013 Mar. Pet. Geol. 47 77
[12] Morita H, Muraoka M and Yamamoto Y 2019 Int. J. Offshore Polar Eng. 29 104
[13] Lei G, Tang J, Zhang L, Wu Q and Li J 2024 Energy 288 129704
[14] Xu K, Lin Y, Shi Q, Li T, Zhang Z and Wu J 2022 Phys. Chem. Chem. Phys. 24 5479
[15] Chen D, Miao T, Chang C, Guo X and Ji Z 2024 Int. J. Heat Mass Transfer 225 125399
[16] Shu J, Chen X, Chou I M, Yang W, Hu J, Hemley R J and Mao H 2011 Geosci. Front. 2 93
[17] Cao P, Wu J, Zhang Z, Fang B and Ning F 2018 J. Phys. Chem. C 122 29081
[18] Lin Y, Liu Y, Xu K, Li T, Zhang Z and Wu J 2022 Adv. Geo-Energy Res. 6 23
[19] Liu J, Fu R, Lin Y, Shi Q, Liu Y, Li T, Zhang Z and Wu J 2022 ACS Sustainable Chem. Eng. 10 10339
[20] Zhang Y, Song Z, Lin Y, Shi Q, Hao Y, Fu Y, Wu J and Zhang Z 2024 J. Phys.: Condens. Matter 36 015101
[21] Wang P, Wang J, Xu K, Lin Y, Shi Q, Li T, Fu Y, Zhang Z and Wu J 2022 J. Mol. Liq. 360 119553
[22] Song Z, Zhou Z, Lin Y, Shi Q, Hao Y, Fu Y, Zhang Z and Wu J 2023 Chin. Phys. B 32 066602
[23] Sloan E D 2003 Nature 426 353
[24] Yousuf M, Qadri S B, Knies D L, Grabowski K S, Coffin R B and Pohlman J W 2004 Appl. Phys. A 78 925
[25] Jewett A I, Stelter D, Lambert J, Saladi S M, Roscioni O M, Ricci M, Autin L, Maritan M, Bashusqeh S M, Keyes T, Dame R T, Shea J E, Jensen G J and Goodsell D S 2021 J. Mol. Biol. 433 166841
[26] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[27] Abascal J L F, Sanz E, García Fernández R and Vega C 2005 J. Chem. Phys. 122 234511
[28] Martin M G and Siepmann J I 1998 J. Phys. Chem. B 102 2569
[29] Bernal J D and Fowler R H 1933 J. Chem. Phys. 1 515
[30] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, In ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[31] Luty B A and Van Gunsteren W F 1996 J. Phys. Chem. 100 2581
[32] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 J. Comput. Phys. 23 327
[33] Evans D J and Holian B L 1985 J. Chem. Phys. 83 4069
[34] Wang R, Liao B, Wang J, Sun J, Wang Y, Wang J, Wang Q, Qu Y and Cheng R 2023 Chem. Eng. J. 451 138757
[35] Vogelsang R and Hoheisel C 1987 Phys. Rev. A 35 3487
[36] An M, Wang H, Yuan Y, Chen D, Ma W, Sharshir S W, Zheng Z, Zhao Y and Zhang X 2022 Surf. Interfaces 28 101690
[37] Thomas J A, Turney J E, Iutzi R M, Amon C H and McGaughey A J H 2010 Phys. Rev. B 81 081411
[38] Miao T, Xiang M, Chen D, An M and Ma W 2022 Int. J. Heat Mass Transfer 183 122099
[39] Ma D, Wan X and Yang N 2018 Phys. Rev. B 98 245420
[40] Liu H and Paddison S J 2016 Phys. Chem. Chem. Phys. 18 11000
[41] Ramasubramani V, Dice B D, Harper E S, Spellings M P, Anderson J A and Glotzer S C 2020 Comput. Phys. Commun. 254 107275
[42] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[43] Tian S, Wu T, Hu S, Ma D and Zhang L 2024 Appl. Phys. Lett. 124 042202
[44] Rodger P M, Forester T R and Smith W 1996 Fluid Phase Equilib. 116 326
[45] Wang Z, Yang L, Liu C and Lin S 2023 Chin. Phys. B 32 023101
[46] Liu Y, Xu K, Xu Y, Liu J, Wu J and Zhang Z 2022 Nanotechnol. Rev. 11 699
[1] Theoretical insights into the structures and fundamental properties of pnictogen nitrides
Jingjing Wang(王晶晶), Panlong Kong(孔攀龙), Dingmei Zhang(张定梅), Defang Gao(高德芳), Zaifu Jiang(蒋再富), and Wei Dai(戴伟). Chin. Phys. B, 2024, 33(9): 096201.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[4] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[5] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[6] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[7] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[8] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[9] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[10] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[11] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[12] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[13] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[14] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[15] Molecular dynamics study of primary radiation damage in TiVTa concentrated solid-solution alloy
Yong-Peng Zhao(赵永鹏), Yan-Kun Dou(豆艳坤), Xin-Fu He(贺新福), Han Cao(曹晗),Lin-Feng Wang(王林枫), Hui-Qiu Deng(邓辉球), and Wen Yang(杨文). Chin. Phys. B, 2024, 33(3): 036104.
No Suggested Reading articles found!