Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096101    DOI: 10.1088/1674-1056/ad6ccd
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire

Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影)†, Binghui Ge(葛炳辉), and Dongsheng Song(宋东升)‡
Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  The microstructure significantly influences the superconducting properties. Herein, the defect structures and atomic arrangements in high-temperature Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta }$ (Bi-2212) superconducting wire are directly characterized via state-of-the-art scanning transmission electron microscopy. Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor. Inclusion phases with varied numbers of CuO$_{2}$ layers are found, and twist interfaces with different angles are identified. This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.
Keywords:  superconductor      microstructure      defect      scanning transmission electron microscopy  
Received:  03 June 2024      Revised:  06 August 2024      Accepted manuscript online:  08 August 2024
PACS:  61.05.-a (Techniques for structure determination)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  84.71.Mn (Superconducting wires, fibers, and tapes)  
Corresponding Authors:  Ying Liu, Dongsheng Song     E-mail:  liuying.hube@outlook.com;dsong@ahu.eud.cn

Cite this article: 

Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升) Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire 2024 Chin. Phys. B 33 096101

[1] Maeda H, Tanaka Y, Fukutomi M and Asano T 1988 Jpn. J. Appl. Phys. 27 L209
[2] Gao Y, Lee P, Coppens P, Subramania M A and Sleight A W 1988 Science 241 954
[3] Sunshine S A, Siegrist T, Schneemeyer L F, Murphy D W, Cava R J, Batlogg B, van Dover R B, Fleming R M, Glarum S H, Nakahara S, Farrow R, Krajewski J J, Zahurak S M, Waszczak J V, Marshall J H, Marsh P, Rupp L W and Peck W F 1988 Phys. Rev. B 38 893
[4] Zhao J, Gan Y L, Yang G, Zhong Y G, Tang C Y, Yang F Z, Phan G N, Sui Q T, Liu Z, Li G, Qiu X G, Zhang Q H, Shen J, Qian T, Lu L, Yan L, Gu G D and Ding H 2022 Chin. Phys. Lett. 39 077403
[5] Liu W, Zha H, Gu G D, Shen X, Ye M and Qiao S 2023 Chin. Phys. Lett. 40 037402
[6] Hull J R, Wilson M N, Bottura L, Rossi L, Green M A, Iwasa Y, Hahn S, Duchateau J L and Kalsi S S 2015 Applied Superconductivity: Handbook on Devices and Applications pp. 403-602
[7] Luo X, Chen H, Li Y, Gao Q, Yin C, Yan H, Miao T, Luo H, Shu Y, Chen Y, Lin C, Zhang S, Wang Z, Zhang F, Yang F, Peng Q, Liu G, Zhao L, Xu Z, Xiang T and Zhou X J 2023 Nat. Phys. 19 1841
[8] Markiewicz W D, Miller J R, Schwartz J, Trociewitz U P and Weijers H W 2006 IEEE Transactions on Applied Superconductivity 16 1523
[9] David A C and David S G 2002 Handbook of Superconducting Materials (1st Ed.)
[10] Hasegawa T, Koizumi T, Aoki Y, Kitaguchi H, Miao H, Kumakura H and Togano K 1999 IEEE Transactions on Applied Superconductivity 9 1884
[11] Okada M, Tanaka K, Wakuda T, Ohata K, Sato J, Kumakura H, Kiyoshi T, Kitaguchi H, Togano K and Wada H 1999 IEEE Transactions on Applied Superconductivity 9 1904
[12] Shen T, Jiang J, Kametani F, Trociewitz U P, Larbalestier D C, Schwartz J and Hellstrom E E 2010 Supercon. Sci. Technol. 23 025009
[13] Feng Y and Larbalestier D C 1994 Interface Sci. 1 401
[14] Li P, Naderi G, Schwartz J and Shen T 2017 Supercon. Sci. Technol. 30 035004
[15] Presland M R, Tallon J L, Buckley R G, Liu R S and Flower N E 1991 Physica C 176 95
[16] Slezak J A, Lee J, Wang M, McElroy K, Fujita K, Andersen B M, Hirschfeld P J, Eisaki H, Uchida S and Davis J C 2008 Proc. Natl. Acad. Sci. USA 105 3203
[17] Johnston S, Vernay F and Devereaux T P 2009 Europhys. Lett. 86 37007
[18] Khaliullin G, Mori M, Tohyama T and Maekawa S 2010 Phys. Rev. Lett. 105 257005
[19] He Y, Nunner T, Hirschfeld P and Cheng H P 2006 Phys. Rev. Lett. 96 197002
[20] Yan H, Gao Q, Song C, Yin C, Chen Y, Zhang F, Yang F, Zhang S, Peng Q, Liu G, Zhao L, Xu Z and Zhou X J 2022 Chin. Phys. B 31 087401
[21] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156
[22] Massee F, Huang Y K and Aprili M 2020 Science 367 68
[23] Maeda H 1996 Bismuth-Based High-Temperature Superconductors
[24] Jin S, Tiefel T H, Sherwood R C, Davis M E, van Dover R B, Kammlott G W, Fastnacht R A and Keith H D 1988 Appl. Phys. Lett. 52 2074
[25] Fan W and Zeng Z 2011 Supercon. Sci. Technol. 24 105007
[26] He Y, Graser S, Hirschfeld P J and Cheng H P 2008 Phys. Rev. B 77 220507
[27] Zhiqiang M, Gaojie X, Shuyuan Z, Shun T, Bin L, Mingliang T, Chenggao F, Cunyi X and Yuheng Z 1997 Phys. Rev. B 55 9130
[28] Song D, Zhang X, Lian C, Liu H, Alexandrou I, Lazić I, Bosch E G T, Zhang D, Wang L, Yu R, Cheng Z, Song C, Ma X, Duan W, Xue Q and Zhu J 2019 Advanced Functional Materials 29 1903843
[29] Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y and Zhu J 2023 Science 381 227
[30] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[31] Maeda A, Hase M, Tsukada I I, Noda K, Takebayashi S and Uchinokura K 1990 Phys. Rev. B 41 6418
[32] Chakravarty S, Kee H Y and Völker K 2004 Nature 428 53
[33] Yücelen E, Lazić I and Bosch E G T 2018 Sci. Rep. 8 2676
[34] Lin R, Wang Q, Song D, He C, Hu K, Liang Z, Du H, Hao N, Ge B and Wen H H 2023 Adv. Mater. 35 2301021
[35] Htch M J, Snoeck E and Kilaas R 1998 Ultramicroscopy 74 131
[36] Zhao S Y F, Cui X, Volkov P A, Yoo H, Lee S, Gardener J A, Akey A J, Engelke R, Ronen Y, Zhong R, Gu G, Plugge S, Tummuru T, Kim M, Franz M, Pixley J H, Poccia N and Kim P 2023 Science 382 1422
[37] Teresa P, Gutierrez J and Obradors X 2023 Nat. Rev. Phys. 6 132
[1] Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明). Chin. Phys. B, 2024, 33(9): 097503.
[2] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[3] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[4] Revealing the microstructures of metal halide perovskite thin films via advanced transmission electron microscopy
Yeming Xian(冼业铭), Xiaoming Wang(王晓明), and Yanfa Yan(鄢炎发). Chin. Phys. B, 2024, 33(9): 096803.
[5] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[6] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[7] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[8] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[9] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
[10] Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健). Chin. Phys. B, 2024, 33(8): 088203.
[11] Observation of parabolic electron bands on superconductor LaRu2As2
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077401.
[12] Two-fold symmetry of the in-plane resistance in kagome superconductor Cs(V1-xTax)3Sb5 with enhanced superconductivity
Zhen Zhao(赵振), Ruwen Wang(王汝文), Yuhang Zhang(张宇航), Ke Zhu(祝轲), Weiqi Yu(余维琪), Yechao Han(韩烨超), Jiali Liu(刘家利), Guojing Hu(胡国静), Hui Guo(郭辉), Xiao Lin(林晓), Xiaoli Dong(董晓莉), Hui Chen(陈辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(7): 077406.
[13] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[14] Negligible normal fluid in superconducting state of heavily overdoped Bi2Sr2CaCu2O8+δ detected by ultra-low temperature angle-resolved photoemission spectroscopy
Chaohui Yin(殷超辉), Qinghong Wang(汪清泓), Yuyang Xie(解于洋), Yiwen Chen(陈逸雯), Junhao Liu(刘俊豪), Jiangang Yang(杨鉴刚), Junjie Jia(贾俊杰), Xing Zhang(张杏), Wenkai Lv(吕文凯), Hongtao Yan(闫宏涛), Hongtao Rong(戎洪涛), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Nan Zong(宗楠), Lijuan Liu(刘丽娟), Rukang Li(李如康), Xiaoyang Wang(王晓洋), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Lin Zhao(赵林), Xintong Li(李昕彤), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2024, 33(7): 077405.
[15] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
No Suggested Reading articles found!