Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097103    DOI: 10.1088/1674-1056/ad5f86
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound Vas

Xianyong Ding(丁献勇)1,2, Haoran Wei(魏皓然)1,2, Ruixiang Zhu(朱瑞翔)1,2, Xiaoliang Xiao(肖晓亮)1,2, Xiaozhi Wu(吴小志)1,2, and Rui Wang(王锐)1,2,†
1 Institute for Structure and Function & Department of Physics & Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, China;
2 Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, China
Abstract  The realization of 100% polarized topological Weyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications. Here, we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs, which was deemed as a half-metallic ferromagnet related to dynamic correlations. Based on the combination of density functional theory and dynamical mean field theory, we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the ${\rm DFT} + U$ regime with effect $U$ values ranging from 1.5 eV to 2.5 eV. Meanwhile, we also investigate the magnetization-dependent topological properties; the results show that the change of magnetization directions only slightly affects the positions of Weyl points, which is attributed to the weak spin-orbital coupling effects. The topological surface states of VAs projected on semi-infinite (001) and (111) surfaces are investigated. The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces. Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective $U$ values range from 1.5 eV to 2.5 eV.
Keywords:  density functional theory      Weyl semimetal      dynamical mean field theory      half metallic ferromagnet  
Received:  15 May 2024      Revised:  03 July 2024      Accepted manuscript online:  05 July 2024
PACS:  71.55.Ak (Metals, semimetals, and alloys)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  75.50.Gg (Ferrimagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204074, 12222402, 92365101,and 12347101) and the Natural Science Foundation of Chongging (Grant No. CSTB2023NSCQ-JQX0024).
Corresponding Authors:  Rui Wang     E-mail:  rcwang@cqu.edu.cn

Cite this article: 

Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐) Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound Vas 2024 Chin. Phys. B 33 097103

[1] De Groot R, Mueller F, van Engen P V and Buschow K 1983 Phys. Rev. Lett. 50 2024
[2] De Groot R, Mueller F, Van Engen P and Buschow K 1984 J. Appl. Phys. 55 2151
[3] De Groot R and Buschow K 1986 J. Magn. Magn. Mater. 54 1377
[4] Benmakhlouf A, Bourourou Y, Bouhemadou A, Bentabet A, Khemloul F, Maabed S, Bouchenafa M and Galanakis I 2018 J. Magn. Magn. Mater. 465 430
[5] Ş aşioglu E, Galanakis I, Sandratskii L M and Bruno P 2005 J. Phys. Condens. Matter. 17 3915
[6] Irkhin V Y and Katsnel’son M I 1994 Phys. Usp. 37 659
[7] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[8] Chappert C, Fert A and Van Dau F N 2007 Nat. Mater. 6 813
[9] Soulen Jr R, Byers J, Osofsky M, Nadgorny B, Ambrose T, Cheng S, Broussard P R, Tanaka C, Nowak J, Moodera J, et al. 1998 Science 282 85
[10] Korotin M, Anisimov V, Khomskii D and Sawatzky G 1998 Phys. Rev. Lett. 80 4305
[11] Yanase A and Siratori K 1984 J. Phys. Soc. Jpn. 53 312
[12] Galanakis I, Dederichs P and Papanikolaou N 2002 Phys. Rev. B 66 134428
[13] Galanakis I, Dederichs P and Papanikolaou N 2002 Phys. Rev. B 66 174429
[14] Galanakis I 2004 J. Phys. Condens. Matter. 16 3089
[15] Shreder E, Streltsov S, Svyazhin A, Makhnev A, Marchenkov V, Lukoyanov A and Weber H 2008 J. Phys. Condens. Matter. 20 045212
[16] Fomina K, Marchenkov V, Shreder E and Weber H 2011 Solid State Phenom. 168 545
[17] Shreder E, Makhnev A, Lukoyanov A and Suresh K 2017 Phys. Met. Metallogr. 118 965
[18] Lidig C, Minár J, Braun J, Ebert H, Gloskovskii A, Krieger J A, Strocov V, Kläui M and Jourdan M 2019 Phys. Rev. B 99 174432
[19] Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H J, Schönhense G, et al. 2014 Nat. Commun. 5 3974
[20] Akai H 1998 Phys. Rev. Lett. 81 3002
[21] Sandratskii L and Bruno P 2002 Phys. Rev. B 66 134435
[22] Wang X L 2008 Phys. Rev. Lett. 100 156404
[23] Ouardi S, Fecher G H, Felser C and Kübler J 2013 Phys. Rev. Lett. 110 100401
[24] Manna K, Sun Y, Muechler L, Kubler J and Felser C 2018 Nat. Rev. Mater. 3 244
[25] Wang X L 2017 Natl. Sci. Rev. 4 252
[26] Cheng X, Xu S, Jia F, Zhao G, Hu M, Wu W and Ren W 2021 Phys. Rev. B 104 104417
[27] Mogulkoc A, Modarresi M and Rudenko A N 2020 Phys. Rev. B 102 024441
[28] Hedin L 1965 Phys. Rev. 139 A796
[29] Damewood L and Fong C Y 2011 Phys. Rev. B 83 113102
[30] Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S, et al. 2022 Chin. Phys. Lett. 39 127301
[31] Xiang W, Wang Y, Ji W, Hou W, Li S and Wang P 2023 Chin. Phys. B 32 037103
[32] Galanakis I and Mavropoulos P 2003 Phys. Rev. B 67 104417
[33] Akinaga H, Manago T and Shirai M 2000 Jpn. J. Appl. Phys. 39 L1118
[34] Shirai M 2003 J. Appl. Phys. 93 6844
[35] Dong X, Jia X, Yan Z, Shen X, Li Z, Qiao Z and Xu X 2023 Chin. Phys. Lett. 40 087301
[36] Sanyal B, Bergqvist L and Eriksson O 2003 Phys. Rev. B 68 054417
[37] Chioncel L, Mavropoulos P, Ležaić M, Blügel S, Arrigoni E, Katsnelson M I and Lichtenstein A I 2006 Phys. Rev. Lett. 96 197203
[38] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[39] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[40] Lv B, Weng H, Fu B, Wang X P, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G, et al. 2015 Phys. Rev. X 5 031013
[41] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljačić M 2015 Science 349 622
[42] Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G, et al. 2015 Nat. Phys. 11 748
[43] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, et al. 2019 Nat. Commun. 10 3424
[44] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[45] Wang Z, Vergniory M, Kushwaha S, Hirschberger M, Chulkov E, Ernst A, Ong N P, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 236401
[46] Nie S, Hashimoto T and Prinz F B 2022 Phys. Rev. Lett. 128 176401
[47] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[48] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[49] See supplementary material for the theoretical background of DFT + DMFT methods, the calculations details, list of the positions of WPs, topological surface states and Fermi arcs, etc., which include Refs.
[47,48,54-65].
[50] Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M and Werner P 2011 Rev. Mod. Phys. 83 349
[51] Haule K 2007 Phys. Rev. B 75 155113
[52] Yu R, Wu Q, Fang Z and Weng H 2017 Phys. Rev. Lett. 119 036401
[53] Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F: Met. Phys. 14 1205
[54] Singh V, Herath U, Wah B, Liao X, Romero A H and Park H 2021 Comput. Phys. Commun. 261 107778
[55] Savrasov S Y and Kotliar G 2004 Phys. Rev. B 69 245101
[56] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[57] Jarrell M 1992 Phys. Rev. Lett. 69 168
[58] Shinaoka H, Assaad F, Blümer N and Werner P 2017 Eur. Phys. J. Spec. Top. 226 2499
[59] Kohn W and Luttinger J M 1960 Phys. Rev. 118 41
[60] Luttinger J M and Ward J C 1960 Phys. Rev. 118 1417
[61] Luttinger J M 1961 Phys. Rev. 121 942
[62] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[63] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[64] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[65] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[1] Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder
Chuanxiong Xu(徐川雄), Haoping Yu(于昊平), Mei Zhou(周梅), and Xuanting Ji(吉轩廷). Chin. Phys. B, 2024, 33(9): 097502.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1−xCo2Sn
Bo-wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[4] Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn
Xiao-Lang Ren(任小浪) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(6): 067102.
[5] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[6] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[7] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[8] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[9] Symmetry transformation of nonlinear optical current of tilted Weyl nodes and application to ferromagnetic MnBi2Te4
Zhuo-Cheng Lu(卢倬成) and Ji Feng(冯济). Chin. Phys. B, 2024, 33(4): 047303.
[10] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[11] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[12] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[13] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[14] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[15] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] TIAN REN-HE (田人和), MANFRED FINK. THE BEAM TEMPERATURE AND ENERGY BROADENING OF A CHARGED-PARTICLE BEAM IN AN AXIALLY SYMMETRIC MAGNETIC FIELD[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 86 -93 .
[4] PENG WEN-JI (彭文基), LI QING-XING (李庆行), YU ZHEN-XIN (余振新), AN NING (安宁), XU MAI (徐迈). STUDIES ON THE DYNAMICS OF OPTICAL BISTABILITY SWITCHING IN THE INTERNAL FABRY-PEROT CAVITY WITH A CdSxSe1-x-DOPED GLASS CHANNEL WAVEGUIDE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(3): 183 -190 .
[5] LU HUA (陆华), WANG XIANG-DONG (王向东), K.MOTAI, T.HASHIZUME, T.SAKURAI. FI-STM STUDY OF HYDROGEN ADSORPTION ON Si(100) SURFACE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(3): 191 -201 .
[6] PENG YU-FENG (彭玉峰), TANG JUN-XIONG (汤俊雄), WANG QING-JI (王庆吉). STUDY OF FARADAY ANOMALOUS DISPERSION SPECTRA OF THE HYPERFINE STRUCTURE OF Rb D2 LINES[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 1 -8 .
[7] ZHAO MING-XIN (赵明信), LIU ZI-DONG (刘子东), LI LI-YUN (李丽云), LI SEN-LIN (李森林), WU ZHENG-HUA (吴正华), ZENG XI-ZHI (曾锡之). MEASUREMENTS OF RELAXATION OF SPIN POLARIZED 129Xe NUCLEI IN HIGH MAGNETIC FIELDS[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 15 -21 .
[8] JIN JI-RONG (金继荣), JIN XIN (金新), JI HE-LIN (吉和林), ZHANG YI-TONG (张贻瞳), XU XIAO-NONG (徐小农), SHI ZHI-XIANG (施智祥), ZHANG ZHI-PING (张治平), YAO XI-XIAN (姚希贤), ZHUANG RUI-FANG (庄瑞芳), XIE HUI (谢晖). INVESTIGATION OF THE EFFECT OF SLOW NEUTRON IRRADIATION ON HALOGEN-DOPED HIGH-Tc SUPERCONDUCTORS AND ITS MECHANISM[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 56 -64 .
[9] LIU SI-MIN (刘思敏), ZHANG GUANG-YIN (张光寅), YAN XIANG-JUN (严向军), XU JING-JUN (许京军), JI WEI-XING (纪卫星), WU YUAN-QING (武原庆), GUO RU (郭儒). A SINGLE-BEAM OPTICAL TRAP FOR AIR BUBBLES IN A LIQUID AND THE CHANGE OF THE OPTICAL FIELD[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 9 -14 .
[10] CHEN XIAO-BO (陈晓波), ZHANG GUANG-YIN (张光寅), WANG HONG (王虹), LIU YAN-BIN (刘言滨), CHEN JIN-KAI (陈金铠), SHANG MEI-RU (商美茹), LI JIANG-WEI​(李江卫). BLUE-GREEN UP-CONVERSION LUMINESCENCE OF NONCHYSTALLINE HoP5O14 INDUCED BY PULSE DCM DYE LASER[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(10): 771 -775 .