Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097102    DOI: 10.1088/1674-1056/ad5c3c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Bose-Einstein distribution temperature features of quasiparticles around magnetopolaron in Gaussian quantum wells of alkali halogen ions

Xin Zhang(张鑫)1,2, Sarengaowa(萨仁高娃)1,2, Shuang Han(韩爽)1,2, Ran An(安然)1,2, Xin-Xue Zhang(张新雪)1,2, Xin-Ying Ji(纪新颖)1,2, Hong-Xu Jiang(江红旭)1,2, Xin-Jun Ma(马新军)1,2, Pei-Fang Li(李培芳)1,2, and Yong Sun(孙勇)1,2,†
1 College of Physics and Electronic Information, Inner Mongolia Minzu University, Tongliao 028000, China;
2 Institute of Condensed Matter Physics, Inner Mongolia Minzu University, Tongliao 028000, China
Abstract  We have applied strong coupling unitary transformation method combined with Bose-Einstein statistical law to investigate magnetopolaron energy level temperature effects in halogen ion crystal quantum wells. The obtained results showed that under magnetic field effect, magnetopolaron quasiparticle was formed through the interaction of electrons and surrounding phonons. At the same time, magnetopolaron was influenced by phonon temperature statistical law and important energy level shifts down and binding energy increases. This revealed that lattice temperature and magnetic field could easily affect magnetopolaron and the above results could play key roles in exploring thermoelectric conversion and conductivity of crystal materials.
Keywords:  temperature effect      quantum well      asymmetric Gaussian potential      magnetopolaron  
Received:  11 March 2024      Revised:  10 May 2024      Accepted manuscript online:  27 June 2024
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  73.21.Fg (Quantum wells)  
  63.20.kd (Phonon-electron interactions)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12164032, 11964026, and 12364010), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2019MS01010, 2022MS01014, and 2020BS01009), the Doctor Research Start-up Fund of Inner Mongolia Minzu University (Grant Nos. BS625 and BS439), and the Basic Research Funds for Universities Directly under the Inner Mongolia Autonomous Region, China (Grant No. GXKY23Z029).
Corresponding Authors:  Yong Sun     E-mail:  sy19851009@126.com,sunyong@imun.edu.cn

Cite this article: 

Xin Zhang(张鑫), Sarengaowa(萨仁高娃), Shuang Han(韩爽), Ran An(安然), Xin-Xue Zhang(张新雪), Xin-Ying Ji(纪新颖), Hong-Xu Jiang(江红旭), Xin-Jun Ma(马新军), Pei-Fang Li(李培芳), and Yong Sun(孙勇) Bose-Einstein distribution temperature features of quasiparticles around magnetopolaron in Gaussian quantum wells of alkali halogen ions 2024 Chin. Phys. B 33 097102

[1] Alexandrov A S and Devreese J T 2010 Advances in polaron physics (Heidelberg: Springer Berlin) pp. 10-12
[2] Emin D 2013 Polarons (England: Cambridge University Press) pp. 7-9
[3] Zheng F and Wang L 2019 Energ. Environ. Sci. 12 1219
[4] De Raedt H and Lagendijk A 1983 Phys. Rev. B 27 6097
[5] Alexandrov A S and Kornilovitch P E 1999 Phys. Rev. Lett. 82 807
[6] Bruderer M, Klein A, Clark S R, et al. 2007 Phys. Rev. A 76 011605
[7] Landau L D and Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419
[8] Rath S P and Schmidt R 2013 Phys. Rev. A 88 053632
[9] Stafström S, Bredas J L, Epstein A J, et al. 1987 Phys. Rev. Lett. 59 1464
[10] Ōsaka Y 1959 Prog. Theor. Phys. 22 437
[11] Mauger A 1983 Phys. Rev. B 27 2308
[12] Devreese J T and Alexandrov A S 2009 Rep. Prog. Phys. 72 066501
[13] Trallero-Giner C, Santiago-Pérez D G and Fomin V M 2023 Sci. Rep. 13 292
[14] Kenfack-Sadem C, Ekengoue C M, Danga J E, et al. 2020 Phys. Lett. A 384 126662
[15] Watanabe S, Ando K, Kang K, et al. 2014 Nat. Phys. 10 308
[16] Seyid-Rzayeva S M 2012 Fizika (Baku) 18 8
[17] Chen S H 2011 Physica E 43 1007
[18] Khordad R and Sedehi H R R 2017 Indian J. Phys. 91 825
[19] Jasmine P C L and Peter A J 2015 J. Semicond. 36 032001
[20] Barat E, Shakarbekovna X D and Abbasovich A S 2019 Eur. Sci. Rev. 5-6 108
[21] Popov V G, Krishtop V G, Henini M, et al. 2022 Physica E 136 115019
[22] Fotue A J, Kenfack S C, Tiotsop M, et al. 2015 Mod. Phys. Lett. B 29 1550241
[23] Khordad R, Rastegar Sedehi H R 2020 Opt. Quantum Electron. 52 1
[24] Wysmołek A, Stȩpniewski R, Potemski M, et al. 2006 Phys. Rev. B 74 195205
[25] Klimin S N, Fomin V M and Devreese J T 2008 Phys. Rev. B 77 205311
[26] Fobasso M F C, Fotue A J, Kenfack S C, et al. 2020 Physica E 118 113941
[27] Donfack B, Fotio F, Fotue A J, et al. 2020 Chin. J. Phys. 66 573
[28] Yang H T and Ji W H 2015 J. Low Temp. Phys. 179 291
[29] Wang W, Van Duppen B, Van der Donck M, et al. 2018 Phys. Rev. B 97 064108
[30] Tiotsop M, Fotue A J, Fotsin H B, et al. 2018 Chin. J. Phys. 56 315
[31] Gong X L, Cao S, Fang Y, et al. 2022 Chin. Phys. B 31 050402
[1] Quantum confinement of carriers in the type-I quantum wells structure
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(9): 097301.
[2] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
[3] Phase-field simulations of the effect of temperature and interface for zirconium δ-hydrides
Zi-Hang Chen(陈子航), Jie Sheng(盛杰), Yu Liu(刘瑜), Xiao-Ming Shi(施小明), Houbing Huang(黄厚兵), Ke Xu(许可), Yue-Chao Wang(王越超), Shuai Wu(武帅), Bo Sun(孙博), Hai-Feng Liu(刘海风), and Hai-Feng Song(宋海峰). Chin. Phys. B, 2024, 33(4): 048201.
[4] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[5] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[6] Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface
Gang Wang(王刚), Shan Guan(管闪), Zhi-Gang Song(宋志刚), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2023, 32(10): 107309.
[7] Single-mode GaSb-based laterally coupled distributed-feedback laser for CO2 gas detection
Shi-Xian Han(韩实现), Jin-Yi Yan(严进一), Chun-Fang Cao(曹春芳), Jin Yang(杨锦), An-Tian Du(杜安天), Yuan-Yu Chen(陈元宇), Ruo-Tao Liu(刘若涛), Hai-Long Wang(王海龙), and Qian Gong(龚谦). Chin. Phys. B, 2023, 32(10): 104205.
[8] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[9] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[10] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[11] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[12] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[13] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[14] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[15] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
No Suggested Reading articles found!