Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097101    DOI: 10.1088/1674-1056/ad553c
RAPID COMMUNICATION Prev   Next  

Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching

Genhao Liang(梁根豪)1,2,†, Hui Cao(曹慧)3,†, Long Cheng(成龙)2,†,‡, Junkun Zha(查君坤)1,2, Mingrui Bao(保明睿)2, Fei Ye(叶飞)2, Hua Zhou(周华)4, Aidi Zhao(赵爱迪)2, and Xiaofang Zhai(翟晓芳)2,§
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
3 Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA;
4 X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
Abstract  Coexistence of ferromagnetism and ferroelasticity in a single material is an intriguing phenomenon, but has been rarely found. Here we studied both the ferromagnetism and ferroelasticity in a group of LaCoO$_{3}$ films with systematically tuned atomic structures. We found that all films exhibit ferroelastic domains with four-fold symmetry and the larger domain size (higher elasticity) is always accompanied by stronger ferromagnetism. We performed synchrotron x-ray diffraction studies to investigate the backbone structure of the CoO$_{6}$ octahedra, and found that both the ferromagnetism and the elasticity are simultaneously enhanced when the in-plane Co-O-Co bond angles are straightened. Therefore the study demonstrates the inextricable correlation between the ferromagnetism and ferroelasticity mediated through the octahedral backbone structure, which may open up new possibilities to develop multifunctional materials.
Keywords:  perovskite oxide film      ferromagnetism      ferroelasticity      twin domain  
Received:  24 May 2024      Revised:  04 June 2024      Accepted manuscript online:  07 June 2024
PACS:  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  71.70.Ch (Crystal and ligand fields)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
  75.47.Lx (Magnetic oxides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072244 and 12104305), the Science and Technology Commission of Shanghai Municipality (Grant No. 21JC1405000), and the ShanghaiTech Startup Fund. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02- 06CH11357.
Corresponding Authors:  Long Cheng, Aidi Zhao, Xiaofang Zhai     E-mail:  chenglong1@shanghaitech.edu.cn;zhaixf@shanghaitech.edu.cn

Cite this article: 

Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳) Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching 2024 Chin. Phys. B 33 097101

[1] Sun C, Alonso J A and Bian J 2021 Adv. Energy Mater. 11 2000459
[2] Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H and Nan C W 2019 Science 365 578
[3] Gu Z, Pandya S, Samanta A, Liu S, Xiao G, Meyers C J G, Damodaran A R, Barak H, Dasgupta A, Saremi S, Polemi A, Wu L, Podpirka A A, Will-Cole A, Hawley C J, Davies P K, York R A, Grinberg I, Martin L W and Spanier J E 2018 Nature 560 622
[4] Yin Y W, Burton J D, Kim Y M, Borisevich A Y, Pennycook S J, Yang S M, Noh T W, Gruverman A, Li X G, Tsymbal E Y and Li Q 2013 Nat. Mater. 12 397
[5] Mou X, Tang J, Lyu Y, Zhang Q, Yang S, Xu F, Liu W, Xu M, Zhou Y, Sun W, Zhong Y, Gao B, Yu P, Qian H and Wu H 2021 Sci. Adv. 7 eabh0648
[6] Izyumskaya N, Alivov Y and Morkoç H 2009 Crit. Rev. Solid State Mater. Sci. 34 89
[7] Lu H, Bark C W, Esque D, Alcala J, Eom C B, Catalan G and Gruverman A 2012 Science 336 59
[8] Lu X, Chen Z, Cao Y, Tang Y, Xu R, Saremi S, Zhang Z, You L, Dong Y, Das S, Zhang H, Zheng L, Wu H, Lv W, Xie G, Liu X, Li J, Chen L, Chen L Q, Cao W and Martin L W 2019 Nat. Commun. 10 3951
[9] Li Q, Wang B, He Q, Yu P, Chen L Q, Kalinin S V and Li J F 2021 Nano Lett. 21 445
[10] Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F and Noh T W 2011 Phys. Rev. Lett. 107 057602
[11] Jaime M, Saul A, Salamon M, Zapf V S, Harrison N, Durakiewicz T, Lashley J C, Andersson D A, Stanek C R, Smith J L and Gofryk K 2017 Nat. Commun. 8 99
[12] Bozorth R M, Tilden E F and Williams A J 1955 Phys. Rev. 99 1788
[13] Hong S S, Gu M, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M and Hwang H Y 2020 Science 368 7
[14] Huang J, Wang H, Sun X, Zhang X and Wang H 2018 ACS Appl. Mater. Interfaces 10 42698
[15] Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R and KalininS V 2009 Nat. Nanotechnol. 4 868
[16] Chai Y S, Cong J Z, He J C, Su D, Ding X X, Singleton J, Zapf V and Sun Y 2021 Phys. Rev. B 103 174433
[17] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661
[18] Hoch M J R, Nellutla S, Tol v J, Choi E S, Lu J, Zheng H and Mitchell J F 2009 Phys. Rev. B 79 214421
[19] Freeland J W, Ma J X and Shi J 2008 Appl. Phys. Lett. 93 212501
[20] Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G and Löhneysen H V 2007 Phys. Rev. B 75 144402
[21] Yoon S, Gao X, Ok J M, Liao Z, Han M G, Zhu Y, Ganesh P, Chisholm M F, Choi W S and Lee H N 2021 Nano Lett. 21 4006
[22] Choi W S, Kwon J H, Jeen H, Hamann-Borrero J E, Radi A, Macke S, Sutarto R, He F, Sawatzky G A, Hinkov V, Kim M and Lee H N 2012 Nano Lett. 12 4966
[23] Guo E J, Desautels R, Lee D, Roldan M A, Liao Z, Charlton T, Ambaye H, Molaison J, Boehler R, Keavney D, Herklotz A, Ward T Z, Lee H N and Fitzsimmons M R 2019 Phys. Rev. Lett. 122 187202
[24] Feng Q, Meng D, Zhou H, Liang G, Cui Z, Huang H, Wang J, Guo J, Ma C, Zhai X, Lu Q and Lu Y 2019 Phys. Rev. Mater. 3 074406
[25] An Q, Xu Z, Wang Z, Meng M, Guan M, Meng S, Zhu X, Guo H, Yang F and Guo J 2021 Appl. Phys. Lett. 118 081602
[26] Fuchs D, Dieterle L, Arac E, Eder R, Adelmann P, Eyert V, Kopp T, Schneider R, Gerthsen D and Löhneysen H V 2009 Phys. Rev. B 79 024424
[27] Guo E J, Desautels R, Keavney D, Roldan M A, Kirby B J, Lee D, Liao Z, Charlton T, Herklotz A, Ward T Z, Fitzsimmons M R and Lee H N 2019 Sci. Adv. 5 eaav5050
[28] Chaturvedi V, Walter J, Paul A, Grutter A, Kirby B, Jeong J S, Zhou H, Zhang Z, Yu B, Greven M, Mkhoyan K A, Birol T and Leighton C 2020 Phys. Rev. Materials 4 034403
[29] Ji Y, Chen P, Zhu M, Liu J, Gao X, Li L, Wang L, Bai X, Chen K and Liao Z 2023 Appl. Phys. Lett. 122 072901
[30] Zhai X, Cheng L, Liu Y, Schlepütz C M, Dong S, Li H, Zhang X, Chu S, Zheng L, Zhang J, Zhao A, Hong H, Bhattacharya A, Eckstein J N and Zeng C 2014 Nat. Commun. 5 4283
[31] Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G J, Knize R and Lu Y 2018 Proc. Natl. Acad. Sci. USA 115 2873
[32] Sterbinsky G E, Ryan P J, Kim J W, Karapetrova E, Ma J X, Shi J and Woicik J C 2012 Phys. Rev. B 85 020403
[33] Salje E K H 2012 Annu. Rev. Mater. Res. 42 265
[34] Brown I D, Dabkowski A and McCleary A 1997 Acta Cryst. B53 750
[35] Woodward P M 1997 Acta Cryst. B53 44
[36] Glazer A M 1972 Acta Cryst. B28 3384
[37] Cao H, Guo H, Shao Y C, Liu Q, Feng X, Lu Q, Wang Z, Zhao A, Fujimori A, Chuang Y D, Zhou H and Zhai X 2021 Nano Lett. 21 3981
[38] May S J, Kim J W, Rondinelli J M, Karapetrova E, Spaldin N A, Bhattacharya A and Ryan P J 2010 Phys. Rev. B 82 014110
[39] May S J, Smith C R, Kim J W, Karapetrova E, Bhattacharya A and Ryan P J 2010 Phys. Rev. B 82 014110
[40] Lempriere B M 1968 AIAA Journal 6 2226
[41] Chen S, Guan C, Ke S, Zeng X, Huang C, Hu S, Yen F, Huang H, Lu Y and Chen L 2018 ACS Appl. Mater. Interfaces 10 18029
[42] Lugovy M, Verbylo D, Orlovskaya N, Reece M, Kuebler J, Graule T and Blugan G 2021 Materials 14 3543
[43] Dawber M and Scott J F 2000 Appl. Phys. Lett. 76 1060
[44] Qiao L, Jang J H, Singh D J, Gai Z, Xiao H, Mehta A, Vasudevan R K, Tselev A, Feng Z, Zhou H, Li S, Prellier W, Zu X, Liu Z, Borisevich A, Baddorf A P and Biegalski M D 2015 Nano Lett. 15 4677
[45] Zhou J S, Yan J Q and Goodenough J B 2005 Phys. Rev. B 71 220103
[1] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[2] Observing ferroelastic switching in Hf0.5Zr0.5O2 thin film
Zhao Guan(关赵), Tao Wang(王陶), Yunzhe Zheng(郑赟喆), Yue Peng(彭悦), Luqi Wei(魏鹿奇), Yuke Zhang(张宇科), Abliz Mattursun(阿卜力孜cdot麦提图尔荪), Jiahao Huang(黄家豪), Wen-Yi Tong(童文旖), Genquan Han(韩根全), Binbin Chen(陈斌斌), Ping-Hua Xiang(向平华), Chun-Gang Duan(段纯刚), and Ni Zhong(钟妮). Chin. Phys. B, 2024, 33(6): 067701.
[3] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[4] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[5] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[6] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[7] Controllable high Curie temperature through 5d transition metal atom doping in CrI3
Xuebing Peng(彭雪兵), Mingsu Si(司明苏), and Daqiang Gao(高大强). Chin. Phys. B, 2024, 33(1): 017503.
[8] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[9] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[10] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[11] Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice
Xiangyan Han(韩香岩), Qianling Liu(刘倩伶), Ruirui Niu(牛锐锐), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Chunrui Han(韩春蕊), Kenji Watanabe, Takashi Taniguchi, Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(11): 117201.
[12] Enhanced ferromagnetism and conductivity of ultrathin freestanding La0.7Sr0.3MnO3 membranes
Siqi Shan(单思齐), Yequan Chen(陈业全), Yongda Chen(陈勇达), Wenzhuo Zhuang(庄文卓), Ruxin Liu(刘汝新), Xu Zhang(张旭), Rong Zhang(张荣), and Xuefeng Wang(王学锋). Chin. Phys. B, 2023, 32(10): 107402.
[13] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[14] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[15] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
No Suggested Reading articles found!