|
|
Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching |
Genhao Liang(梁根豪)1,2,†, Hui Cao(曹慧)3,†, Long Cheng(成龙)2,†,‡, Junkun Zha(查君坤)1,2, Mingrui Bao(保明睿)2, Fei Ye(叶飞)2, Hua Zhou(周华)4, Aidi Zhao(赵爱迪)2, and Xiaofang Zhai(翟晓芳)2,§ |
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 3 Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA; 4 X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA |
|
|
Abstract Coexistence of ferromagnetism and ferroelasticity in a single material is an intriguing phenomenon, but has been rarely found. Here we studied both the ferromagnetism and ferroelasticity in a group of LaCoO$_{3}$ films with systematically tuned atomic structures. We found that all films exhibit ferroelastic domains with four-fold symmetry and the larger domain size (higher elasticity) is always accompanied by stronger ferromagnetism. We performed synchrotron x-ray diffraction studies to investigate the backbone structure of the CoO$_{6}$ octahedra, and found that both the ferromagnetism and the elasticity are simultaneously enhanced when the in-plane Co-O-Co bond angles are straightened. Therefore the study demonstrates the inextricable correlation between the ferromagnetism and ferroelasticity mediated through the octahedral backbone structure, which may open up new possibilities to develop multifunctional materials.
|
Received: 24 May 2024
Revised: 04 June 2024
Accepted manuscript online: 07 June 2024
|
PACS:
|
71.28.+d
|
(Narrow-band systems; intermediate-valence solids)
|
|
71.70.Ch
|
(Crystal and ligand fields)
|
|
75.25.-j
|
(Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52072244 and 12104305), the Science and Technology Commission of Shanghai Municipality (Grant No. 21JC1405000), and the ShanghaiTech Startup Fund. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02- 06CH11357. |
Corresponding Authors:
Long Cheng, Aidi Zhao, Xiaofang Zhai
E-mail: chenglong1@shanghaitech.edu.cn;zhaixf@shanghaitech.edu.cn
|
Cite this article:
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳) Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching 2024 Chin. Phys. B 33 097101
|
[1] Sun C, Alonso J A and Bian J 2021 Adv. Energy Mater. 11 2000459 [2] Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H and Nan C W 2019 Science 365 578 [3] Gu Z, Pandya S, Samanta A, Liu S, Xiao G, Meyers C J G, Damodaran A R, Barak H, Dasgupta A, Saremi S, Polemi A, Wu L, Podpirka A A, Will-Cole A, Hawley C J, Davies P K, York R A, Grinberg I, Martin L W and Spanier J E 2018 Nature 560 622 [4] Yin Y W, Burton J D, Kim Y M, Borisevich A Y, Pennycook S J, Yang S M, Noh T W, Gruverman A, Li X G, Tsymbal E Y and Li Q 2013 Nat. Mater. 12 397 [5] Mou X, Tang J, Lyu Y, Zhang Q, Yang S, Xu F, Liu W, Xu M, Zhou Y, Sun W, Zhong Y, Gao B, Yu P, Qian H and Wu H 2021 Sci. Adv. 7 eabh0648 [6] Izyumskaya N, Alivov Y and Morkoç H 2009 Crit. Rev. Solid State Mater. Sci. 34 89 [7] Lu H, Bark C W, Esque D, Alcala J, Eom C B, Catalan G and Gruverman A 2012 Science 336 59 [8] Lu X, Chen Z, Cao Y, Tang Y, Xu R, Saremi S, Zhang Z, You L, Dong Y, Das S, Zhang H, Zheng L, Wu H, Lv W, Xie G, Liu X, Li J, Chen L, Chen L Q, Cao W and Martin L W 2019 Nat. Commun. 10 3951 [9] Li Q, Wang B, He Q, Yu P, Chen L Q, Kalinin S V and Li J F 2021 Nano Lett. 21 445 [10] Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F and Noh T W 2011 Phys. Rev. Lett. 107 057602 [11] Jaime M, Saul A, Salamon M, Zapf V S, Harrison N, Durakiewicz T, Lashley J C, Andersson D A, Stanek C R, Smith J L and Gofryk K 2017 Nat. Commun. 8 99 [12] Bozorth R M, Tilden E F and Williams A J 1955 Phys. Rev. 99 1788 [13] Hong S S, Gu M, Verma M, Harbola V, Wang B Y, Lu D, Vailionis A, Hikita Y, Pentcheva R, Rondinelli J M and Hwang H Y 2020 Science 368 7 [14] Huang J, Wang H, Sun X, Zhang X and Wang H 2018 ACS Appl. Mater. Interfaces 10 42698 [15] Balke N, Choudhury S, Jesse S, Huijben M, Chu Y H, Baddorf A P, Chen L Q, Ramesh R and KalininS V 2009 Nat. Nanotechnol. 4 868 [16] Chai Y S, Cong J Z, He J C, Su D, Ding X X, Singleton J, Zapf V and Sun Y 2021 Phys. Rev. B 103 174433 [17] Zheng H, Wang J, Lofland S E, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde S R, Ogale S B, Bai F, Viehland D, Jia Y, Schlom D G, Wuttig M, Roytburd A and Ramesh R 2004 Science 303 661 [18] Hoch M J R, Nellutla S, Tol v J, Choi E S, Lu J, Zheng H and Mitchell J F 2009 Phys. Rev. B 79 214421 [19] Freeland J W, Ma J X and Shi J 2008 Appl. Phys. Lett. 93 212501 [20] Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G and Löhneysen H V 2007 Phys. Rev. B 75 144402 [21] Yoon S, Gao X, Ok J M, Liao Z, Han M G, Zhu Y, Ganesh P, Chisholm M F, Choi W S and Lee H N 2021 Nano Lett. 21 4006 [22] Choi W S, Kwon J H, Jeen H, Hamann-Borrero J E, Radi A, Macke S, Sutarto R, He F, Sawatzky G A, Hinkov V, Kim M and Lee H N 2012 Nano Lett. 12 4966 [23] Guo E J, Desautels R, Lee D, Roldan M A, Liao Z, Charlton T, Ambaye H, Molaison J, Boehler R, Keavney D, Herklotz A, Ward T Z, Lee H N and Fitzsimmons M R 2019 Phys. Rev. Lett. 122 187202 [24] Feng Q, Meng D, Zhou H, Liang G, Cui Z, Huang H, Wang J, Guo J, Ma C, Zhai X, Lu Q and Lu Y 2019 Phys. Rev. Mater. 3 074406 [25] An Q, Xu Z, Wang Z, Meng M, Guan M, Meng S, Zhu X, Guo H, Yang F and Guo J 2021 Appl. Phys. Lett. 118 081602 [26] Fuchs D, Dieterle L, Arac E, Eder R, Adelmann P, Eyert V, Kopp T, Schneider R, Gerthsen D and Löhneysen H V 2009 Phys. Rev. B 79 024424 [27] Guo E J, Desautels R, Keavney D, Roldan M A, Kirby B J, Lee D, Liao Z, Charlton T, Herklotz A, Ward T Z, Fitzsimmons M R and Lee H N 2019 Sci. Adv. 5 eaav5050 [28] Chaturvedi V, Walter J, Paul A, Grutter A, Kirby B, Jeong J S, Zhou H, Zhang Z, Yu B, Greven M, Mkhoyan K A, Birol T and Leighton C 2020 Phys. Rev. Materials 4 034403 [29] Ji Y, Chen P, Zhu M, Liu J, Gao X, Li L, Wang L, Bai X, Chen K and Liao Z 2023 Appl. Phys. Lett. 122 072901 [30] Zhai X, Cheng L, Liu Y, Schlepütz C M, Dong S, Li H, Zhang X, Chu S, Zheng L, Zhang J, Zhao A, Hong H, Bhattacharya A, Eckstein J N and Zeng C 2014 Nat. Commun. 5 4283 [31] Meng D, Guo H, Cui Z, Ma C, Zhao J, Lu J, Xu H, Wang Z, Hu X, Fu Z, Peng R, Guo J, Zhai X, Brown G J, Knize R and Lu Y 2018 Proc. Natl. Acad. Sci. USA 115 2873 [32] Sterbinsky G E, Ryan P J, Kim J W, Karapetrova E, Ma J X, Shi J and Woicik J C 2012 Phys. Rev. B 85 020403 [33] Salje E K H 2012 Annu. Rev. Mater. Res. 42 265 [34] Brown I D, Dabkowski A and McCleary A 1997 Acta Cryst. B53 750 [35] Woodward P M 1997 Acta Cryst. B53 44 [36] Glazer A M 1972 Acta Cryst. B28 3384 [37] Cao H, Guo H, Shao Y C, Liu Q, Feng X, Lu Q, Wang Z, Zhao A, Fujimori A, Chuang Y D, Zhou H and Zhai X 2021 Nano Lett. 21 3981 [38] May S J, Kim J W, Rondinelli J M, Karapetrova E, Spaldin N A, Bhattacharya A and Ryan P J 2010 Phys. Rev. B 82 014110 [39] May S J, Smith C R, Kim J W, Karapetrova E, Bhattacharya A and Ryan P J 2010 Phys. Rev. B 82 014110 [40] Lempriere B M 1968 AIAA Journal 6 2226 [41] Chen S, Guan C, Ke S, Zeng X, Huang C, Hu S, Yen F, Huang H, Lu Y and Chen L 2018 ACS Appl. Mater. Interfaces 10 18029 [42] Lugovy M, Verbylo D, Orlovskaya N, Reece M, Kuebler J, Graule T and Blugan G 2021 Materials 14 3543 [43] Dawber M and Scott J F 2000 Appl. Phys. Lett. 76 1060 [44] Qiao L, Jang J H, Singh D J, Gai Z, Xiao H, Mehta A, Vasudevan R K, Tselev A, Feng Z, Zhou H, Li S, Prellier W, Zu X, Liu Z, Borisevich A, Baddorf A P and Biegalski M D 2015 Nano Lett. 15 4677 [45] Zhou J S, Yan J Q and Goodenough J B 2005 Phys. Rev. B 71 220103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|