Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 088202    DOI: 10.1088/1674-1056/ad50c2
RAPID COMMUNICATION Prev   Next  

Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries

Zilin Hu(胡紫霖)1,2,†, Bin Tang(唐彬)6,†, Ting Lin(林挺)5, Chu Zhang(张楚)1,2, Yaoshen Niu(牛耀申)1, Yuan Liu(刘渊)1,2, Like Gao(高立克)7, Fei Xie(谢飞)1, Xiaohui Rong(容晓晖)1,4, Yaxiang Lu(陆雅翔)1,3,‡, and Yongsheng Hu(胡勇胜)1,2,3,4,§
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China;
4 Yangtze River Delta Physics Research Center Co. Ltd, Liyang 213300, China;
5 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100049, China;
6 Yangtze River Delta Physics Research Center Co. Ltd, Liyang 213300, China;
7 Guangxi Power Grid Co. Ltd., Nanning 530023, China
Abstract  In Na-ion batteries, O3-type layered oxide cathode materials encounter challenges such as particle cracking, oxygen loss, electrolyte side reactions, and multi-phase transitions during the charge/discharge process. This study focuses on surface coating with NiTiO$_{3}$ achieved via secondary heat treatment using a coating precursor and the surface material. Through in-situ x-ray diffraction (XRD) and differential electrochemical mass spectrometry (DEMS), along with crystal structure characterizations of post-cycling materials, it was determined that the NiTiO$_{3}$ coating layer facilitates the formation of a stable lattice structure, effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte. This enhancement in cycling stability was evidenced by a capacity retention of approximately 74% over 300 cycles at 1 C, marking a significant 30% improvement over the initial sample. Furthermore, notable advancements in rate performance were observed. Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase, presenting a novel approach for designing layered oxide cathodes with higher energy density.
Keywords:  Na-ion battery      layered oxides      high voltage      surface coating  
Received:  16 April 2024      Revised:  07 May 2024      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFB2402500), the National Natural Science Foundation of China (Grant Nos. 52122214, 92372116, and 52394174), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology BE2022002-5), and Guangxi Power Grid Project (Grant No. GXKJXM20210260).
Corresponding Authors:  Yaxiang Lu, Yongsheng Hu     E-mail:  yxlu@iphy.ac.cn;yshu@iphy.ac.cn

Cite this article: 

Zilin Hu(胡紫霖), Bin Tang(唐彬), Ting Lin(林挺), Chu Zhang(张楚), Yaoshen Niu(牛耀申), Yuan Liu(刘渊), Like Gao(高立克), Fei Xie(谢飞), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yongsheng Hu(胡勇胜) Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries 2024 Chin. Phys. B 33 088202

[1] Song S, Kotobuki M, Chen Y, Manzhos S, Xu C, Hu N and Lu L 2017 Sci. Rep. 7 373
[2] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636
[3] Gao J, Sun K, Guo H, Li Z, Wang J, Ma X, Bai X and Chen D 2022 Chin. Phys. B 31 098201
[4] Xi K, Chu S, Zhang X, Zhang X, Zhang H, Xu H, Bian J, Fang T, Guo S, Liu P, Chen M and Zhou H 2020 Nano Energy 67 104215
[5] Zhao C, Lu Y, Chen L and Hu Y S 2019 Nano Res. 12 2018
[6] Ding Y, Ding F, Rong X, Lu Y and Hu Y S 2022 Chin. Phys. B 31 068201
[7] Wang P F, Yao H R, Liu X Y, Yin Y X, Zhang J N, Wen Y, Yu X, Gu L and Guo Y G 2018 Sci. Adv. 4 eaar6018
[8] Sathiya M, Jacquet Q, Doublet M L, Karakulina O M, Hadermann J and Tarascon J-M 2018 Adv. Energy Mater. 8 1702599
[9] Hwang J Y, Oh S M, Myung S T, Chung K Y, Belharouak I and Sun Y K 2015 Nat. Commun. 6 6865
[10] Guo Y J, Wang P F, Niu Y B, Zhang X D, Li Q, Yu X, Fan M, Chen W P, Yu Y, Liu X, Meng Q, Xin S, Yin Y X and Guo Y G 2021 Nat. Commun. 12 5267
[11] You Y and Manthiram A 2017 Adv. Energy Mater. 8 1701785
[12] Goodenough J B and Kim Y 2010 Chem. Mater. 22 587
[13] Lee E, Brown D E, Alp E E, Ren Y, Lu J, Woo J J and Johnson C S 2015 Chem. Mater. 27 6755
[14] Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya H A and Zhou C 2016 Nano Energy 27 27
[15] Yu Y, Kong W, Li Q, Ning D, Schuck G, Schumacher G, Su C and Liu X 2020 ACS Appl. Energy Mater. 3 933
[16] Ramasamy H V, Kaliyappan K, Thangavel R, Aravindan V, Kang K, Kim D U, Park Y I, Sun X and Lee Y S 2017 J. Mater. Chem. A 5 13842
[17] Zhou Y, Lee Y, Sun H, Wallas J M, George S M and Xie M 2017 ACS Appl. Mater. Inter. 9 9614
[18] Tan Z, Chen X, Li Y, Xi X, Hao S, Li X, Shen X, He Z, Zhao W and Yang Y 2023 Adv. Funct. Mater. 33 2215123
[19] Jo J H, Choi J U, Konarov A, Yashiro H, Yuan S, Shi L, Sun Y K and Myung S T 2018 Adv. Funct. Mater. 28 1705968
[20] Jo C H, Jo J H, Yashiro H, Kim S J, Sun Y K and Myung S T 2018 Adv. Energy Mater. 8 1702942
[21] Yang H, Gao R M, Zhang X D, Liang J Y, Meng X H, Lu Z Y, Cao F F and Ye H 2022 Adv. Mater. 34 e2204835
[22] Wang H, Ding F, Wang Y, Han Z, Dang R, Yu H, Yang Y, Chen Z, Li Y, Xie F, Zhang S, Zhang H, Song D, Rong X, Zhang L, Xu J, Yin W, Lu Y, Xiao R, Su D, Chen L and Hu Y S 2023 ACS Energy Lett. 8 1434
[23] Wang L, Liu T, Wu T and Lu J 2022 Nature 611 61
[24] Wang L, Liu G, Wang R, Wang X, Wang L, Yao Z, Zhan C and Lu J 2023 Adv. Mater. 35 2209483
[25] Gao M, Yan C, Shao Q, Chen J, Zhang C, Chen G, Jiang Y, Zhu T, Sun W, Liu Y, Gao M and Pan H 2021 Small 17 2008132
[26] Cai M, Dong Y, Xie M, Dong W, Dong C, Dai P, Zhang H, Wang X, Sun X, Zhang S, Yoon M, Xu H, Ge Y, Li J and Huang F 2023 Nat. Energy 8 159
[27] Tang Y, Wu L, Xiao L, Wen D, Guo Q and Liang W 2018 Ceram. Int. 44 18025
[28] Majumder T, Das D and Majumder S B 2021 Mater. Lett. 301 130293
[29] Yang H, Zhang Q, Chen M, Yang Y and Zhao J 2023 Adv. Funct. Mater. 34 2308257
[30] Ding F, Zhao C, Zhou D, Meng Q, Xiao D, Zhang Q, Niu Y, Li Y, Rong X, Lu Y, Chen L and Hu Y S 2020 Energy Storage Mater. 30 420
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[33] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107
[35] Shi Q, Qi R, Feng X, Wang J, Li Y, Yao Z, Wang X, Li Q, Lu X, Zhang J and Zhao Y 2022 Nat. Commun. 13 3205
[36] Li M W, Yuan J P, Gao X M, Liang E Q and Wang C Y 2016 Appl. Phys. A 122 725
[37] Paramanik L, Subudhi S and Parida K M 2022 Mater. Res. Bull. 155 111965
[38] Xu W, Dang R, Zhou L, Yang Y, Lin T, Guo Q, Xie F, Hu Z, Ding F, Liu Y, Liu Y, Mao H, Hong J, Zuo Z, Wang X, Yang R, Jin X, Lu Y, Rong X, Xu N and Hu Y S 2023 Adv. Mater. 35 e2301314
[39] Ding W, Ren H, Li Z, Shang M, Song Y, Zhao W, Chang L, Pang T, Xu S, Yi H, Zhou L, Lin H, Zhao Q and Pan F 2024 Adv. Energy Mater. 14 2303926
[40] Yoda Y, Kubota K, Kuroki K, Suzuki S, Yamanaka K, Yaji T, Amagasa S, Yamada Y, Ohta T and Komaba S2020 Small 16 e2006483
[41] Niu Y, Hu Z, Zhang B, Xiao D, Mao H, Zhou L, Ding F, Liu Y, Yang Y, Xu J, Yin W, Zhang N, Li Z, Yu X, Hu H, Lu Y, Rong X, Li J and Hu Y S 2023 Adv. Energy Mater. 13 2300746
[42] Mariyappan S, Marchandier T, Rabuel F, Iadecola A, Rousse G, Morozov A V, Abakumov A M and Tarascon J M 2020 Chem. Mater. 32 1657
[43] Wang Q, Mariyappan S, Vergnet J, Abakumov A M, Rousse G, Rabuel F, Chakir M and Tarascon J M 2019 Adv. Energy Mater. 9 1901785
[44] Zheng J, Gu M, Xiao J, Zuo P, Wang C and Zhang J G 2013 Nano Lett. 13 3824
[45] Zhang H, Omenya F, Yan P, Luo L, Whittingham M S, Wang C and Zhou G 2017 ACS Energy Lett. 2 2607
[46] Du X Y, Meng Y, Yuan H and Xiao D 2023 Energy Storage Mater. 56 132
[47] Zhang K, Xu Z, Li G, Luo R J, Ma C, Wang Y, Zhou Y N and Xia Y 2023 Adv. Energy Mater. 13 2302793
[48] Yang X, Wang C, Yan P, Jiao T, Hao J, Jiang Y, Ren F, Zhang W, Zheng J, Cheng Y, Wang X, Yang W, Zhu J, Pan S, Lin M, Zeng L, Gong Z, Li J and Yang Y 2022 Adv. Energy Mater. 12 2200197
[49] Ding F, Zhao C, Xiao D, Rong X, Wang H, Li Y, Yang Y, Lu Y and Hu Y S 2022 J. Am. Chem. Soc. 144 8286
[1] Synthesis and electrochemical performance of La2CuO4 as a promising coating material for high voltage Li-rich layered oxide cathodes
Fuliang Guo(郭福亮), Jiaze Lu(卢嘉泽), Meihua Su(苏美华), Yue Chen(陈约), Jieyun Zheng(郑杰允), Liang Yin(尹良), and Hong Li(李泓). Chin. Phys. B, 2023, 32(8): 088201.
[2] Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material
Na Liu(柳娜). Chin. Phys. B, 2023, 32(12): 128202.
[3] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
[4] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[5] Hard carbons derived from pine nut shells as anode materials for Na-ion batteries
Hao Guo(郭浩), Kai Sun(孙凯), Yaxiang Lu(陆雅翔), Hongliang Wang(王洪亮), Xiaobai Ma(马小柏), Zhengyao Li(李正耀), Yong-Sheng Hu(胡勇胜), Dongfeng Chen(陈东风). Chin. Phys. B, 2019, 28(6): 068203.
[6] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[7] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
Gen-Cai Guo(郭根材), Changhao Wang(王长昊), Bang-Ming Ming(明帮铭), Si-Wei Luo(罗斯玮), Heng Su(苏恒), Bo-Ya Wang(王博亚), Ming Zhang(张铭), Hai-Jun Yu(尉海军), Ru-Zhi Wang(王如志). Chin. Phys. B, 2018, 27(11): 118801.
[8] Novel high-K with low specific on-resistance high voltage lateral double-diffused MOSFET
Li-Juan Wu(吴丽娟), Zhong-Jie Zhang(章中杰), Yue Song(宋月), Hang Yang(杨航), Li-Min Hu(胡利民), Na Yuan(袁娜). Chin. Phys. B, 2017, 26(2): 027101.
[9] Continuous operation of 2.45-GHz microwave proton source for 306 hours with more than 50 mA DC beam
Peng Shi-Xiang (彭士香), Zhang Ai-Lin (张艾霖), Ren Hai-Tao (任海涛), Zhang Tao (张滔), Xu Yuan (徐源), Zhang Jing-Feng (张景丰), Gong Jian-Hua (龚建华), Guo Zhi-Yu (郭之虞), Chen Jia-Er (陈佳洱). Chin. Phys. B, 2015, 24(7): 075203.
[10] New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries
Mu Lin-Qin (穆林沁), Hu Yong-Sheng (胡勇胜), Chen Li-Quan (陈立泉). Chin. Phys. B, 2015, 24(3): 038202.
[11] Magnetic iron oxide nanoparticles:Synthesis and surface coating techniques for biomedical applications
Sun Sheng-Nan (孙圣男), Wei Chao (魏超), Zhu Zan-Zan (朱赞赞), Hou Yang-Long (侯仰龙), Subbu S Venkatraman, Xu Zhi-Chuan (徐梽川). Chin. Phys. B, 2014, 23(3): 037503.
[12] Comparative investigation of resistance and ability to trigger high voltage discharge for single and multiple femtosecond filaments in air
Guo Kai-Min (郭凯敏), Hao Zuo-Qiang (郝作强), Lin Jing-Quan (林景全), Sun Chang-Kai (孙长凯), Gao Xun (高勋), Zhao Zhen-Ming (赵振明). Chin. Phys. B, 2013, 22(3): 035203.
[13] Electric field modulation technique for high-voltage AlGaN/GaN Schottky barrier diodes
Tang Cen (汤岑), Xie Gang (谢刚), Zhang Li (张丽), Guo Qing (郭清), Wang Tao (汪涛), Sheng Kuang (盛况). Chin. Phys. B, 2013, 22(10): 106107.
[14] A new analytical model of high voltage silicon on insulator (SOI) thin film devices
Hu Sheng-Dong(胡盛东), Zhang Bo(张波), and Li Zhao-Ji(李肇基). Chin. Phys. B, 2009, 18(1): 315-319.
No Suggested Reading articles found!