Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 128202    DOI: 10.1088/1674-1056/ad01a3
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material

Na Liu(柳娜)
Contemporary Amperex Technology Co., Limited, Ningde 352000, China
Abstract  Layered cathode materials have been successfully commercialized and applied to electric vehicles. To further improve improve the energy density of these marterials is still the main efforts in the market. Therefore, developing high-voltage LiNixCoyMnzO2 (x+y+z=1, NCM) to achieve high energy density is particularly important. However, under high voltage cycling, NCM often exhibits rapid capacity degradation, which can be attributed to oxygen release, structural phase transition and particle cracking. In this work, the representative single-crystal LiNi0.5Co0.2Mn0.3O2 (NCM523) was studied under various high charge cut-off voltages. Analysis by x-ray diffraction (XRD), transmission electron microscope (TEM) and electron back scatter diffraction (EBSD) measurements indicated that the rock-salt phase is formed on the surface of the particles after high voltage cycling, which is responsible for the increase of impedance and the rapid decay of capacity. Therefore, inhibiting the formation of rock-salt phase is believed an effective strategy to address the failure of NCM under high voltages. These findings provide effective guidance for the development of high-voltage NCM.
Keywords:  high voltage      Li-ion battery      phase transition      LiNixCoyMnzO2  
Received:  24 July 2023      Revised:  22 September 2023      Accepted manuscript online:  10 October 2023
PACS:  82.45.-h (Electrochemistry and electrophoresis)  
  82.45.Yz (Nanostructured materials in electrochemistry)  
Corresponding Authors:  Na Liu     E-mail:  LiuN@CATL.com

Cite this article: 

Na Liu(柳娜) Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material 2023 Chin. Phys. B 32 128202

[1] Shi J L, Xiao D D, Ge M Y, Yu X Q, Chu Y, Huang X J, Zhang X D, Yin Y X, Yang X Q, Guo Y G, Gu L and Wan L J 2018 Adv. Mater. 30 1705575
[2] Zhang H, He X Z, Chen Z H, Yang Y, Xu H, Wang L and He X M 2022 Adv. Energy Mater. 12 2202022
[3] Ni L S, Zhang S, Di A D, Deng W T, Zou G Q, Hou H S and Ji X B 2022 Adv. Energy Mater. 12 2201510
[4] Kim J, Lee H, Cha H, Yoon M, Park M and Cho J 2018 Adv. Energy Mater. 8 1702028
[5] Shi C G, Peng X X, Dai P, Xiao P H, Zheng W C, Li H Y, Li H, Indris S, Mangold S, Hong Y H, Luo C X, Shen C H, Wei Y M, Huang L and Sun S G 2022 Adv. Energy Mater. 12 2200569
[6] Xu C, Reeves P J, Jacquet Q and Grey C P 2020 Adv. Energy Mater. 11 2003404
[7] Zhang F, Lou S F, Li S, Yu Z J, Liu Q S, Dai A, Cao C T, Toney M F, Ge M Y, Xiao X S, Lee W K, YaoY D, Deng J J, Liu T C, Tang Y P, Yin G P, Lu J, Su D and Wang J J 2020 Nat. Commun. 11 3050
[8] Wandt J, Freiberg A, Thomas R, Gorlin Y, Siebel A, Jung R, Gasteigera H A and Tromp M 2016 J. Mater. Chem. A 4 18300
[9] Han G M, Kim Y S, Ryu H H, Sun Y K and Yoon C S 2022 ACS Energy Lett. 7 2919
[10] Ren Z M, Zhang X H, Liu M, Zhou J J, Sun S, He H Y and Wang D Y 2019 J. Power Sources 416 104
[11] Yan P F, Zheng J M, Gu M, Xiao J, Zhang J G and Wang C M 2017 Nat. Commun. 8 14101
[12] Bi Y J, Tao J H, Wu Y Q, Li L Z, Xu Y B, Hu E Y, Wu B B, Hu J T, Wang C M, Zhang J G, Yue Qi and Jie Xiao 2020 Science 370 1313
[13] Park N Y, Park G T, Kim S B, Jung W M, Park B C and Sun Y K 2022 ACS Energy Lett. 7 2362
[14] Liu W, Oh P, Liu X, Lee M J, W, Chae S, Kim Y and Cho J 2015 Angew. Chem. Int. Ed. 54 4440
[15] Sun J M, Cao X,Yang H J, He P, Dato M A, Cabana J and Zhou H S 2022 Angew. Chem. Int. Ed. 134 202207225
[16] Jung S K, Gwon H, Hong J, Park K Y, Seo D H, Kim H, Jangsuk Hyun, Yang W and Kang K 2014 Adv. Energy Mater. 4 1300787
[17] Lin F, Markus I M, Nordlund D, Weng T C, Asta M D, Xin H L and Doeff M M 2014 Nat. Commun. 5 3529
[18] Zhu J, Sharifi-Asl S, Garcia J C, Iddir H H, Croy J R, Shahbazian-Yassar R and Chen G Y 2020 ACS Appl. Energy Mater. 3 4799
[19] Huang W Y, Lin C, Zhang M J, Li S N, Chen Z F, Zhao W G, Zhu C, Zhao Q, Chen H B and Pan F 2021 Adv. Energy Mater. 11 2102646
[20] Tanim T R, Yang Z Z, Finegan D P, Chinnam P R, Lin Y L, Weddle P J, Bloom I, Colclasure A M, Dufek E J, Wen J G, Tsai Y F, Evans M C, Smith K, Allen J M, Dickerson C C, H. Quinn A H, Dunlop A R, Trask S E and Jansen A N 2022 Adv. Energy Mater. 12 2103712
[21] Dixit H, Zhou W, Idrobo J C, Nanda J and Cooper V R 2014 ACS Nano 8 2103712
[22] Zhang M J, Teng G F, Karen Y C, Chen-Wiegart, Duan Y D, Peter Ko J Y, Zheng J X, Thieme J, Dooryhee E, Chen Z H, Bai J M, Amine K, Pan F and Wang F 2018 J. Am. Chem. Soc. 140 12484
[23] Zhang J C,Zhou D, Yang W Y, Yang J B, Sun L M, Schumacher G and Liu X F 2019 J. Electrochem. Soc. 166 A4097
[24] Uchida S, Zettsu N, Hirata K, Kamic K and Teshima K 2016 RSC Adv. 6 67514
[25] Huang Y Y, Chen J T, Ni J F, Zhou H H and Zhang X X 2009 J. Power Sources 188 538
[26] Song H G, Kim J Y, Kim K T and Park Y J 2011 J. Power Sources 196 6847
[27] Song H G, Kim S B and Par Y J 2012 J. Electroceram. 29 163
[1] Capturing the non-equilibrium state in light-matter-free-electron interactions through ultrafast transmission electron microscopy
Wentao Wang(汪文韬), Shuaishuai Sun(孙帅帅), Jun Li(李俊), Dingguo Zheng(郑丁国), Siyuan Huang(黄思远), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2024, 33(1): 010701.
[2] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[3] A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园). Chin. Phys. B, 2023, 32(9): 097402.
[4] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[5] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[6] Synthesis and electrochemical performance of La2CuO4 as a promising coating material for high voltage Li-rich layered oxide cathodes
Fuliang Guo(郭福亮), Jiaze Lu(卢嘉泽), Meihua Su(苏美华), Yue Chen(陈约), Jieyun Zheng(郑杰允), Liang Yin(尹良), and Hong Li(李泓). Chin. Phys. B, 2023, 32(8): 088201.
[7] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[8] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[9] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[10] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[11] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[12] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[13] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
[14] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[15] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
No Suggested Reading articles found!