INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries |
Sihan Chen(陈思汗)1, Jun Li(黎俊)1, Keke Liu(刘可可)1, Xiaochen Sun(孙笑晨)1, Jingwei Wan(万京伟)1,2, Huiyu Zhai(翟慧宇)1,2, Xinfeng Tang(唐新峰)1,‡, and Gangjian Tan(谭刚健)1,† |
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; 2 International School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract Ga-doped Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ (Ga-LLZO) has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries (ASSLBs) due to its high room temperature ionic conductivity. However, the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO$_{2}$ impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly. In this study, we show that by simply engineering the defect chemistry of Ga-LLZO, namely, the lithium deficiency level, LiGaO$_{2}$ impurity phase is effectively inhibited in the final synthetic product. Consequently, defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal, while its high room temperature ionic conductivity ($\sim 1.9 \times 10^{-3}$ S$\cdot$cm$^{-1}$) is well reserved. The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA$\cdot$cm$^{-2}$, and cycles stably for 500 hours at a current density of 0.3 mA$\cdot$cm$^{-2}$. This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs.
|
Received: 30 January 2024
Revised: 12 April 2024
Accepted manuscript online:
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.33.Pt
|
(Solid state chemistry)
|
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
82.45.Gj
|
(Electrolytes)
|
|
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant No. 52171221) and the National Key Research and Development Program of China (Grant No. 2019YFA0704900). |
Corresponding Authors:
Gangjian Tan, Xinfeng Tang
E-mail: gtan@whut.edu.cn;tangxf@whut.edu.cn
|
Cite this article:
Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健) Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries 2024 Chin. Phys. B 33 088203
|
[1] Wang X, Jing T and Liang D 2023 Chin. Phys. B 32 067102 [2] Wang L, Li N, Chen H S and Song W L 2023 Chin. Phys. B 32 108201 [3] Chen F, Lin J, Chen Y, Dong B, Yin C, Tian S, Sun D, Xie J, Zhang Z and Li H 2022 Chin. Phys. B 31 058101 [4] Chen F, Zeng C, Huang C, Lin J, Chen Y, Dong B, Yin C, Tian S, Sun D and Zhang Z 2022 Chin. Phys. B 31 078101 [5] Kalhoff J, Eshetu G G, Bresser D and Passerini S 2015 ChemSusChem 8 2154 [6] Thangadurai V and Weppner W 2005 Adv. Funct. Mater. 15 107 [7] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S and Kawamoto K 2011 Nat. Mater. 10 682 [8] Nie X, Hu J and Li C 2023 Interdiscip. Mater. 2 365 [9] Lutz H, Kuske P and Wussow K 1987 Z. Anorg. Allg. Chem. 553 172 [10] Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A and Hasegawa S 2018 Adv. Mater. 30 1803075 [11] Zhang L, Liu Y, You Y, Vinu A and Mai L 2023 Interdiscip. Mater. 2 91 [12] Li C, Li R, Liu K, Si R, Zhang Z and Hu Y S 2022 Interdiscip. Mater. 1 396 [13] Li Y, Xu H, Chien P H, Wu N, Xin S, Xue L, Park K, Hu Y Y and Goodenough J B 2018 Angew. Chem. Int. Ed. 57 8587 [14] Schnell J, Tietz F, Singer C, Hofer A, Billot N and Reinhart G 2019 Energy Environ. Sci. 12 1818 [15] Xue Z, He D and Xie X 2015 J. Mater. Chem. A 3 19218 [16] Jiang Z, Carroll B and Abraham K 1997 Electrochim. Acta 42 2667 [17] Ali U, Karim K J B A and Buang N A 2015 Polym. Rev. 55 678 [18] Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y and Cui G J A E M 2015 Adv. Energy Mater. 5 1501082 [19] Croce F, Appetecchi G, Persi L and Scrosati B 1998 Nature 394 456 [20] Wang L, Shi H, Xie Y and Wu Z S 2023 Interdiscip. Mater. 2 789 [21] Xiao G, Xu H, Bai C, Liu M and He Y B 2023 Interdiscip. Mater. 2 609 [22] Xiong Z, Wang Z, Zhou W, Liu Q, Wu J F, Liu T H, Xu C and Liu J 2023 Energy Storage Mater. 57 171 [23] Berthier C, Gorecki W, Minier M, Armand M, Chabagno J and Rigaud P 1983 Solid State Ionics 11 91 [24] Han L, Wang L, Chen Z, Kan Y, Hu Y, Zhang H and He X 2023 Adv. Funct. Mater. 33 2300892 [25] Liao W and Liu C 2021 ChemNanoMat 7 1177 [26] Lv F, Wang Z, Shi L, Zhu J, Edström K, Mindemark J and Yuan S 2019 J. Power Sources 441 227175 [27] Wang Q, Wu J F, Lu Z, Ciucci F, Pang W K and Guo X 2019 Adv. Funct. Mater. 29 1904232 [28] Wu J F, Zou Z, Pu B, Ladenstein L, Lin S, Xie W, Li S, He B, Fan Y and Pang W K 2023 Adv. Mater. 35 2303730 [29] Hofstetter K, Samson A J, Narayanan S and Thangadurai V 2018 J. Power Sources 390 297 [30] Buschmann H, Dölle J, Berendts S, Kuhn A, Bottke P, Wilkening M, Heitjans P, Senyshyn A, Ehrenberg H and Lotnyk A 2011 Phys. Chem. Chem. Phys. 13 19378 [31] Rettenwander D, Wagner R, Langer J, Maier M E, Wilkening M and Amthauer G 2016 Eur. J. Mineral. 28 619 [32] Pfenninger R, Afyon S, Garbayo I, Struzik M and Rupp J L 2018 Adv. Funct. Mater. 28 1800879 [33] Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J and Allen J L 2012 Mater. Chem. Phys. 134 571 [34] Xia W, Xu B, Duan H, Guo Y, Kang H, Li H and Liu H 2016 ACS Appl. Mater. Interfaces 8 5335 [35] Rettenwander D, Geiger C A and Amthauer G 2013 Inorg. Chem. 52 8005 [36] Kim J H, Park D H, Jang J S, Shin J H, Kim M C, Kim S B, Moon S H, Lee S N and Park K W 2022 Chem. Eng. J. 446 137035 [37] Wagner R, Redhammer G n J, Rettenwander D, Senyshyn A, Schmidt W, Wilkening M and Amthauer G 2016 Chem. Mater. 28 1861 [38] Dumon A, Huang M, Shen Y and Nan C W 2013 Solid State Ionics 243 36 [39] Huang M, Xu W, Shen Y, Lin Y H and Nan C W 2014 Electrochim. Acta 115 581 [40] Rangasamy E, Wolfenstine J, Allen J and Sakamoto J 2013 J. Power Sources 230 261 [41] Gao Z, Bai Y, Fu H, Yang J, Ferber T, Feng J, Jaegermann W and Huang Y 2022 Adv. Funct. Mater. 32 2112113 [42] Tang Y, Luo Z, Liu T, Liu P, Li Z and Lu A 2017 Ceram. Int. 43 11879 [43] Gao J, Zhu J, Li X, Li J, Guo X, Li H and Zhou W 2021 Adv. Funct. Mater. 31 2001918 [44] Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y and Akimoto J 2011 Chem. Lett. 40 60 [45] Li J, Zhang J, Zhai H, Tang X and Tan G 2022 J. Eur. Ceram. Soc. 42 1568 [46] Su J, Huang X, Song Z, Xiu T, Badding M E, Jin J and Wen Z 2019 Ceram. Int. 45 14991 [47] El Shinawi H and Janek J 2013 J. Power Sources 225 13 [48] Huang L H and Li C C 2023 J. Power Sources 556 232527 [49] Wu J F, Chen E Y, Yu Y, Liu L, Wu Y, Pang W K, Peterson V K and Guo X 2017 ACS Appl. Mater. Interfaces 9 1542 [50] Li J, Luo H, Liu K, Zhang J, Zhai H, Su X, Wu J, Tang X and Tan G 2023 ACS Appl. Mater. Interfaces 15 7165 [51] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [52] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [53] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [54] Kobi S and Mukhopadhyay A 2018 J. Eur. Ceram. Soc. 38 4707 [55] Paolella A, Zhu W, Bertoni G, Savoie S, Feng Z, Demers H, Gariepy V, Girard G, Rivard E and Delaporte N 2020 ACS Appl. Energy Mater. 3 3415 [56] Goodenough J B 1997 Solid State Ionics 94 17 [57] Matsuda Y, Sakaida A, Sugimoto K, Mori D, Takeda Y, Yamamoto O and Imanishi N 2017 Solid State Ionics 311 69 [58] Rettenwander D, Redhammer G n, Preishuber-Pflügl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff M M and Wilkening M 2016 Chem. Mater. 28 2384 [59] Qin S, Zhu X, Jiang Y, Ling M e, Hu Z and Zhu J 2018 Funct. Mater. Lett. 11 1850029 [60] Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X and Guo X 2018 ACS Appl. Mater. Interfaces 11 898 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|