Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 088203    DOI: 10.1088/1674-1056/ad41b9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries

Sihan Chen(陈思汗)1, Jun Li(黎俊)1, Keke Liu(刘可可)1, Xiaochen Sun(孙笑晨)1, Jingwei Wan(万京伟)1,2, Huiyu Zhai(翟慧宇)1,2, Xinfeng Tang(唐新峰)1,‡, and Gangjian Tan(谭刚健)1,†
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
2 International School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
Abstract  Ga-doped Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ (Ga-LLZO) has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries (ASSLBs) due to its high room temperature ionic conductivity. However, the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO$_{2}$ impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly. In this study, we show that by simply engineering the defect chemistry of Ga-LLZO, namely, the lithium deficiency level, LiGaO$_{2}$ impurity phase is effectively inhibited in the final synthetic product. Consequently, defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal, while its high room temperature ionic conductivity ($\sim 1.9 \times 10^{-3}$ S$\cdot$cm$^{-1}$) is well reserved. The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA$\cdot$cm$^{-2}$, and cycles stably for 500 hours at a current density of 0.3 mA$\cdot$cm$^{-2}$. This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs.
Keywords:  Ga-doped Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ (Ga-LLZO)      defect chemistry engineering      high room temperature ionic conductivity      electrochemical stability  
Received:  30 January 2024      Revised:  12 April 2024      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.33.Pt (Solid state chemistry)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  82.45.Gj (Electrolytes)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant No. 52171221) and the National Key Research and Development Program of China (Grant No. 2019YFA0704900).
Corresponding Authors:  Gangjian Tan, Xinfeng Tang     E-mail:  gtan@whut.edu.cn;tangxf@whut.edu.cn

Cite this article: 

Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健) Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries 2024 Chin. Phys. B 33 088203

[1] Wang X, Jing T and Liang D 2023 Chin. Phys. B 32 067102
[2] Wang L, Li N, Chen H S and Song W L 2023 Chin. Phys. B 32 108201
[3] Chen F, Lin J, Chen Y, Dong B, Yin C, Tian S, Sun D, Xie J, Zhang Z and Li H 2022 Chin. Phys. B 31 058101
[4] Chen F, Zeng C, Huang C, Lin J, Chen Y, Dong B, Yin C, Tian S, Sun D and Zhang Z 2022 Chin. Phys. B 31 078101
[5] Kalhoff J, Eshetu G G, Bresser D and Passerini S 2015 ChemSusChem 8 2154
[6] Thangadurai V and Weppner W 2005 Adv. Funct. Mater. 15 107
[7] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S and Kawamoto K 2011 Nat. Mater. 10 682
[8] Nie X, Hu J and Li C 2023 Interdiscip. Mater. 2 365
[9] Lutz H, Kuske P and Wussow K 1987 Z. Anorg. Allg. Chem. 553 172
[10] Asano T, Sakai A, Ouchi S, Sakaida M, Miyazaki A and Hasegawa S 2018 Adv. Mater. 30 1803075
[11] Zhang L, Liu Y, You Y, Vinu A and Mai L 2023 Interdiscip. Mater. 2 91
[12] Li C, Li R, Liu K, Si R, Zhang Z and Hu Y S 2022 Interdiscip. Mater. 1 396
[13] Li Y, Xu H, Chien P H, Wu N, Xin S, Xue L, Park K, Hu Y Y and Goodenough J B 2018 Angew. Chem. Int. Ed. 57 8587
[14] Schnell J, Tietz F, Singer C, Hofer A, Billot N and Reinhart G 2019 Energy Environ. Sci. 12 1818
[15] Xue Z, He D and Xie X 2015 J. Mater. Chem. A 3 19218
[16] Jiang Z, Carroll B and Abraham K 1997 Electrochim. Acta 42 2667
[17] Ali U, Karim K J B A and Buang N A 2015 Polym. Rev. 55 678
[18] Zhang J, Zhao J, Yue L, Wang Q, Chai J, Liu Z, Zhou X, Li H, Guo Y and Cui G J A E M 2015 Adv. Energy Mater. 5 1501082
[19] Croce F, Appetecchi G, Persi L and Scrosati B 1998 Nature 394 456
[20] Wang L, Shi H, Xie Y and Wu Z S 2023 Interdiscip. Mater. 2 789
[21] Xiao G, Xu H, Bai C, Liu M and He Y B 2023 Interdiscip. Mater. 2 609
[22] Xiong Z, Wang Z, Zhou W, Liu Q, Wu J F, Liu T H, Xu C and Liu J 2023 Energy Storage Mater. 57 171
[23] Berthier C, Gorecki W, Minier M, Armand M, Chabagno J and Rigaud P 1983 Solid State Ionics 11 91
[24] Han L, Wang L, Chen Z, Kan Y, Hu Y, Zhang H and He X 2023 Adv. Funct. Mater. 33 2300892
[25] Liao W and Liu C 2021 ChemNanoMat 7 1177
[26] Lv F, Wang Z, Shi L, Zhu J, Edström K, Mindemark J and Yuan S 2019 J. Power Sources 441 227175
[27] Wang Q, Wu J F, Lu Z, Ciucci F, Pang W K and Guo X 2019 Adv. Funct. Mater. 29 1904232
[28] Wu J F, Zou Z, Pu B, Ladenstein L, Lin S, Xie W, Li S, He B, Fan Y and Pang W K 2023 Adv. Mater. 35 2303730
[29] Hofstetter K, Samson A J, Narayanan S and Thangadurai V 2018 J. Power Sources 390 297
[30] Buschmann H, Dölle J, Berendts S, Kuhn A, Bottke P, Wilkening M, Heitjans P, Senyshyn A, Ehrenberg H and Lotnyk A 2011 Phys. Chem. Chem. Phys. 13 19378
[31] Rettenwander D, Wagner R, Langer J, Maier M E, Wilkening M and Amthauer G 2016 Eur. J. Mineral. 28 619
[32] Pfenninger R, Afyon S, Garbayo I, Struzik M and Rupp J L 2018 Adv. Funct. Mater. 28 1800879
[33] Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J and Allen J L 2012 Mater. Chem. Phys. 134 571
[34] Xia W, Xu B, Duan H, Guo Y, Kang H, Li H and Liu H 2016 ACS Appl. Mater. Interfaces 8 5335
[35] Rettenwander D, Geiger C A and Amthauer G 2013 Inorg. Chem. 52 8005
[36] Kim J H, Park D H, Jang J S, Shin J H, Kim M C, Kim S B, Moon S H, Lee S N and Park K W 2022 Chem. Eng. J. 446 137035
[37] Wagner R, Redhammer G n J, Rettenwander D, Senyshyn A, Schmidt W, Wilkening M and Amthauer G 2016 Chem. Mater. 28 1861
[38] Dumon A, Huang M, Shen Y and Nan C W 2013 Solid State Ionics 243 36
[39] Huang M, Xu W, Shen Y, Lin Y H and Nan C W 2014 Electrochim. Acta 115 581
[40] Rangasamy E, Wolfenstine J, Allen J and Sakamoto J 2013 J. Power Sources 230 261
[41] Gao Z, Bai Y, Fu H, Yang J, Ferber T, Feng J, Jaegermann W and Huang Y 2022 Adv. Funct. Mater. 32 2112113
[42] Tang Y, Luo Z, Liu T, Liu P, Li Z and Lu A 2017 Ceram. Int. 43 11879
[43] Gao J, Zhu J, Li X, Li J, Guo X, Li H and Zhou W 2021 Adv. Funct. Mater. 31 2001918
[44] Awaka J, Takashima A, Kataoka K, Kijima N, Idemoto Y and Akimoto J 2011 Chem. Lett. 40 60
[45] Li J, Zhang J, Zhai H, Tang X and Tan G 2022 J. Eur. Ceram. Soc. 42 1568
[46] Su J, Huang X, Song Z, Xiu T, Badding M E, Jin J and Wen Z 2019 Ceram. Int. 45 14991
[47] El Shinawi H and Janek J 2013 J. Power Sources 225 13
[48] Huang L H and Li C C 2023 J. Power Sources 556 232527
[49] Wu J F, Chen E Y, Yu Y, Liu L, Wu Y, Pang W K, Peterson V K and Guo X 2017 ACS Appl. Mater. Interfaces 9 1542
[50] Li J, Luo H, Liu K, Zhang J, Zhai H, Su X, Wu J, Tang X and Tan G 2023 ACS Appl. Mater. Interfaces 15 7165
[51] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[52] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[53] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[54] Kobi S and Mukhopadhyay A 2018 J. Eur. Ceram. Soc. 38 4707
[55] Paolella A, Zhu W, Bertoni G, Savoie S, Feng Z, Demers H, Gariepy V, Girard G, Rivard E and Delaporte N 2020 ACS Appl. Energy Mater. 3 3415
[56] Goodenough J B 1997 Solid State Ionics 94 17
[57] Matsuda Y, Sakaida A, Sugimoto K, Mori D, Takeda Y, Yamamoto O and Imanishi N 2017 Solid State Ionics 311 69
[58] Rettenwander D, Redhammer G n, Preishuber-Pflügl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff M M and Wilkening M 2016 Chem. Mater. 28 2384
[59] Qin S, Zhu X, Jiang Y, Ling M e, Hu Z and Zhu J 2018 Funct. Mater. Lett. 11 1850029
[60] Wu J F, Pu B W, Wang D, Shi S Q, Zhao N, Guo X and Guo X 2018 ACS Appl. Mater. Interfaces 11 898
[1] Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries
Zilin Hu(胡紫霖), Bin Tang(唐彬), Ting Lin(林挺), Chu Zhang(张楚), Yaoshen Niu(牛耀申), Yuan Liu(刘渊), Like Gao(高立克), Fei Xie(谢飞), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yongsheng Hu(胡勇胜). Chin. Phys. B, 2024, 33(8): 088202.
[2] Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
Qiuchen Wang(王秋辰), Yuli Huang(黄昱力), Jing Xu(许晶), Xiqian Yu(禹习谦), Hong Li(李泓), and Liquan Chen(陈立泉). Chin. Phys. B, 2024, 33(8): 088201.
[3] Accurate estimation of Li/Ni mixing degree of lithium nickel oxide cathode materials
Penghao Chen(陈鹏浩), Lei Xu(徐磊), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2024, 33(5): 058202.
[4] Atomistic understanding of capacity loss in LiNiO2 for high-nickel Li-ion batteries: First-principles study
Shuai Peng(彭率), Li-Juan Chen(陈丽娟), Chang-Chun He(何长春), and Xiao-Bao Yang(杨小宝). Chin. Phys. B, 2024, 33(5): 058201.
[5] Structural stability and ion migration of Li2MnO3 cathode material under high pressures
Ze-Ren Xie(谢泽仁), Si-Si Zhou(周思思), Bei-Bei He(贺贝贝), Huan-Wen Wang(王欢文), Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(张祥功), and Rui Wang(汪锐). Chin. Phys. B, 2023, 32(12): 126101.
[6] Influence of carbon sources on the performance of carbon-coated nano-silicon
Lin Wang(王琳), Na Li(李娜), Hao-Sen Chen(陈浩森), and Wei-Li Song(宋维力). Chin. Phys. B, 2023, 32(10): 108201.
[7] A novel calculation strategy for optimized prediction of the reduction of electrochemical window at anode
Guochen Sun(孙国宸), Jian Gao(高健), and Hong Li(李泓). Chin. Phys. B, 2023, 32(7): 078201.
[8] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[9] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[10] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[11] Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries
Xiang-Gong Zhang(张祥功), Wei Wu(吴伟), Si-Si Zhou(周思思), Fei Huang(黄飞), Shi-Hao Xu(许诗浩), Liang Yin(尹良), Wei Yang(杨伟), and Hong Li(李泓). Chin. Phys. B, 2023, 32(5): 056101.
[12] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[13] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[14] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[15] Anionic redox reaction mechanism in Na-ion batteries
Xueyan Hou(侯雪妍), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(9): 098801.
No Suggested Reading articles found!