Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure |
Xiao-Jing Dong(董晓晶)1,2 and Chang-Wen Zhang(张昌文)1,† |
1 School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan 250022, China; 2 School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China |
|
|
Abstract Valley-polarized quantum anomalous Hall effect (VQAHE), combined nontrivial band topology with valleytronics, is of importance for both fundamental sciences and emerging applications. However, the experimental realization of this property is challenging. Here, by using first-principles calculations and modal analysis, we predict a mechanism of producing VQAHE in two-dimensional ferromagnetic van der Waals germanene/MnI$_{2}$ heterostructure. This heterostructure exhibits both valley anomalous Hall effect and VQAHE due to the joint effects of magnetic exchange effect and spin-orbital coupling with the aid of anomalous Hall conductance and chiral edge state. Moreover interestingly, through the electrical modulation of ferroelectric polarization state in In$_{2}$Se$_{3}$, the germanene/MnI$_{2}$/In$_{2}$Se$_{3}$ heterostructure can undergo reversible switching from a semiconductor to a metallic behavior. This work offers a guiding advancement for searching for VQAHE in ferromagnetic van der Waals heterostructures and exploiting energy-efficient devices based on the VQAHE.
|
Received: 31 January 2024
Revised: 24 April 2024
Accepted manuscript online: 15 May 2024
|
PACS:
|
73.43.-f
|
(Quantum Hall effects)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52173283), Taishan Scholar Program of Shandong Province (Grant No. ts20190939), and Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043). |
Corresponding Authors:
Chang-Wen Zhang
E-mail: ss_zhangchw@ujn.edu.cn
|
Cite this article:
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文) Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure 2024 Chin. Phys. B 33 077303
|
[1] Wang W G, Li M, Hageman S and Chien C L 2012 Nat. Mater. 11 64 [2] Tsymbal E Y 2012 Nat. Mater. 11 12 [3] Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N, Mizuguchi M, Tulapurkar A A, Shinjo T, Shiraishi M, Mizukami S, Ando Y and Suzuki Y 2009 Nat. Nanotechnol. 4 158 [4] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 Nanoscale 15 8395 [5] Jia K, Dong X J, Li S S, Ji W X and Zhang C W 2023 J. Mater. Chem. C 11 10359 [6] Zhang A, Yang K, Zhang Y, Pan A and Chen M 2021 Phys. Rev. B 104 L201403 [7] Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W and Xu X 2015 Nat. Phys. 11 148 [8] Liu Y, Gao Y, Zhang S, He J, Yu J and Liu Z 2019 Nano Res. 12 2695 [9] Olsen T and Souza I 2015 Phys. Rev. B 92 125146 [10] Tong W, Gong S, Wan X and Duan C 2016 Nat. Commun. 7 13612 [11] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601 [12] Chen M X, Zhong Z and Weinert M 2016 Phys. Rev. B 94 075409 [13] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [14] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802 [15] Wu B, Song Y L, Ji W X, Wang P J, Zhang S F and Zhang C W 2023 Phys. Rev. B 107 214419 [16] He R, Wang D, Luo N, Zeng J, Chen K Q and Tang L M 2023 Phys. Rev. Lett. 130 046401 [17] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112 [18] Zhou J, Sun Q and Jena P 2017 Phys. Rev. Lett. 119 046403 [19] Li Y, Liu Y, Wang C, Wang J, Xu Y and Duan W 2018 Phys. Rev. B 98 201407 [20] Macneill D, Heikes C, Mak K F, Anderson Z, Kormányos A, Zólyomi V, Park J and Ralph D C 2015 Phys. Rev. Lett. 114 037401 [21] Zeng M, Xiao Y, Liu J, Yang K and Fu L 2018 Chem. Rev. 118 6236 [22] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696 [23] Qi J, Li X, Niu Q and Feng J 2015 Phys. Rev. B 92 121403 [24] Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A and Ren W 2020 Phys. Rev. B 101 125401 [25] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M C and Xu X 2018 Nano Lett. 18 3823 [26] Liu W R, Dong X J, Lv Y Z, Ji W X, Cao Q, Wang P J, Li F and Zhang C W 2022 Nanoscale 14 3632 [27] Lei C, Li X, Ma Y and Qian Z 2023 Phys. Rev. B 108 155431 [28] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong Di, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [29] Zhang A, Gong Z, Zhu Z, Pan A and Chen M 2020 Phys. Rev. B 102 155413 [30] Zhang Q, Yang S A, Mi W, Cheng Y and Schwingenschlögl U 2016 Adv. Mater. 28 959 [31] Kresse G, Furthmüller J and Hafner J 1994 Phys. Rev. B 50 13181 [32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [34] Allouche A 2012 J. Comput. Chem. 32 174 [35] Wu X, Cai Y, Xie Q, Weng H, Fan H and Hu J 2012 Phys. Rev. B 86 134413 [36] Yekta Y, Hadipour H, Ş aşloglu E, Friedrich C, Jafari S A, Blügel S and Mertig I 2021 Phys. Rev. Mater. 5 034001 [37] Bo X, Fu L, Wan X, Li S and Pu Y 2024 Phys. Rev. B 109 014405 [38] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [39] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [40] Botana A S and Norman M R 2019 Phys. Rev. Mater. 3 044001 [41] Zhai B, Du J, Shen C, Wang T, Peng Y, Zhang Q and Xia C 2019 Phys. Rev. B 100 195307 [42] Anderson P W 1959 Phys. Rev. 115 2 [43] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [44] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [45] Dong X J, Ren M J and Zhang C W 2022 Phys. Chem. Chem. Phys. 24 21631 [46] Choi Y, Villanova J W and Park K 2020 Phys. Rev. B 101 035105 [47] Villanova J W and Park K 2018 Phys. Rev. B 98 075123 [48] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 [49] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|