Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077401    DOI: 10.1088/1674-1056/ad4d63
RAPID COMMUNICATION Prev   Next  

Observation of parabolic electron bands on superconductor LaRu2As2

Xingtai Zhou(周兴泰)1,2, Geng Li(李更)1,2,3,†, Lulu Pan(潘禄禄)1,2, Zichao Chen(陈子超)1,2, Meng Li(李萌)1,2, Yanhao Shi(时延昊)1,2, Haitao Yang(杨海涛)1,2, and Hong-Jun Gao(高鸿钧)1,2,3
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Hefei National Laboratory, Hefei 230088, China
Abstract  Ru-based superconductor LaRu$_{2}$As$_{2}$ has been discovered exhibiting the highest critical temperature of $\sim 7.8 $ K among iron-free transition metal pnictides with the ThCr$_{2}$Si$_{2}$-type crystal structure. However, microscopic research on this novel superconducting material is still lacking. Here, we utilize scanning tunneling microscopy/spectroscopy to uncover the superconductivity and surface structure of LaRu$_{2}$As$_{2}$. Two distinct terminating surfaces are identified on the cleaved crystals, namely, the As surface and the La surface. Atomic missing line defects are observed on the La surface. Both surfaces exhibit a superconducting gap of $\sim 1.0 $ meV. By employing quasiparticle interference techniques, we observe standing wave patterns near the line defects on the La atomic plane. These patterns are attributed to quasiparticle scattering from two electron type parabolic bands.
Keywords:  superconductivity      line defect      quasi-particle scattering      electron band  
Received:  07 April 2024      Revised:  10 May 2024      Accepted manuscript online:  20 May 2024
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.35.Dv (Composition, segregation; defects and impurities)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62488201 and 52072401), the National Key R&D Program of China (Grant No. 2019YFA0308500), the Chinese Academy of Sciences (Grant No. YSBR-003), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Corresponding Authors:  Geng Li     E-mail:  gengli.iop@iphy.ac.cn

Cite this article: 

Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Observation of parabolic electron bands on superconductor LaRu2As2 2024 Chin. Phys. B 33 077401

[1] Guo Q, Pan B J, Yu J, Ruan B B, Chen D Y, Wang X C, Mu Q G, Chen G F and Ren Z A 2016 Sci. Bull. 61 921
[2] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J and Kotliar G 2022 Nature 601 35
[3] Li G, Li M, Zhou X and Gao H J 2024 Rep. Prog. Phys. 87 016501
[4] Li G, Zhu S, Wang D, Wang Y and Gao H J 2021 Supercond. Sci. Technol. 34 073001
[5] Li G, Zhu S, Fan P, Cao L and Gao H J 2022 Chin. Phys. B 31 080301
[6] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[7] Sasmal K, Lv B, Lorenz B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007
[8] Torikachvili M S, Bud’ko S L, Ni N and Canfield P C 2008 Phys. Rev. Lett. 101 057006
[9] Li M, Li G, Cao L, Zhou X, Wang X, Jin C, Chiu C K, Pennycook S J, Wang Z and Gao H J 2022 Nature 606 890
[10] Liu W, Cao L, Zhu S, Kong L, Wang G, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F, Kondo T, Du S, Cao G H, Shin S, Fu L, Yin Z, Gao H J and Ding H 2020 Nat. Commun. 11 5688
[11] Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J and Ding H 2021 Nat. Commun. 12 4146
[12] Fan P, Chen H, Zhou X, Cao L, Li G, Li M, Qian G, Xing Y, Shen C, Wang X, Jin C, Gu G, Ding H and Gao H J 2023 Nano Lett. 23 4541
[13] Wang X, Gong D, Liu B, Ma X, Zhao J, Wang P, Sheng Y, Guo J, Sun L, Zhang W, Lai X, Tan S, Yang Y and Li S 2022 Chin. Phys. Lett. 39 107101
[14] Li J, Phan G N, Wang X, Yang F, Hu Q, Jia K, Zhao J, Liu W, Zhang R, Shi Y, Li S, Qian T and Ding H 2023 Chin. Phys. B 33 017401
[15] Grinenko V, Materne P, Sarkar R, Luetkens H, Kihou K, Lee C H, Akhmadaliev S, Efremov D V, Drechsler S L and Klauss H H 2017 Phys. Rev. B 95 214511
[16] Grinenko V, Sarkar R, Kihou K, Lee C H, Morozov I, Aswartham S, Büchner B, Chekhonin P, Skrotzki W, Nenkov K, Hühne R, Nielsch K, Drechsler S L, Vadimov V L, Silaev M A, Volkov P A, Eremin I, Luetkens H and Klauss H H 2020 Nat. Phys. 16 789
[17] Iguchi Y, Shi R A, Kihou K, Lee C H, Barkman M, Benfenati A L, Grinenko V, Babaev E and Moler K A 2023 Science 380 1244
[18] Zhao S Z, Song H Y, Hu L L, Xie T, Liu C, Luo H Q, Jiang C Y, Zhang X, Nie X C, Meng J Q, Duan Y X, Liu S B, Xie H Y and Liu H Y 2020 Phys. Rev. B 102 144519
[19] Luo J, Wang C, Wang Z, Guo Q, Yang J, Zhou R, Matano K, Oguchi T, Ren Z, Cao G and Zheng G Q 2020 Chin. Phys. B 29 067402
[20] Goodman B B 1966 Rep. Prog. Phys. 29 445
[21] Rosenstein B and Li D 2010 Rev. Mod. Phys. 82 109
[22] Hadi M A, Ali M S, Naqib S H and Islam A K M A 2017 Chin. Phys. B 26 037103
[23] Rahaman Md Z and Rahman Md A 2017 J. Alloys Compd. 695 2827
[24] Cao L, Song Y, Liu Y B, Zheng Q, Han G, Liu W, Li M, Chen H, Xing Y, Cao G H, Ding H, Lin X, Du S, Zhang Y Y, Li G, Wang Z and Gao H J 2021 Nano Res. 14 3921
[25] Li A, Yin J X, Wang J, Wu Z, Ma J, Sefat A S, Sales B C, Mandrus D G, McGuire M A, Jin R, Zhang C, Dai P, Lv B, Chu C W, Liang X, Hor P H, Ting C S and Pan S H 2019 Phys. Rev. B 99 134520
[26] Nascimento V B, Li A, Jayasundara D R, Xuan Y, O’Neal J, Pan S, Chien T Y, Hu B, He X B, Li G, Sefat A S, McGuire M A, Sales B C, Mandrus D, Pan M H, Zhang J, Jin R and Plummer E W 2009 Phys. Rev. Lett. 103 076104
[27] Liu X, Tao R, Ren M, Chen W, Yao Q, Wolf T, Yan Y, Zhang T and Feng D 2019 Nat. Commun. 10 1039
[28] Marshall M S J, Newell D T, Payne D J, Egdell R G and Castell M R 2011 Phys. Rev. B 83 035410
[29] Liu Y, Wei T, He G, Zhang Y, Wang Z and Wang J 2023 Nature 618 934
[30] Lee W C, Wu C, Arovas D P and Zhang S C 2009 Phys. Rev. B 80 245439
[31] Crommie M F, Lutz C P and Eigler D M 1993 Nature 363 524
[32] Hoffman J E, McElroy K, Lee D H, Lang K M, Eisaki H, Uchida S and Davis J C 2002 Science 297 1148
[33] Avraham N, Reiner J, Kumar-Nayak A, Morali N, Batabyal R, Yan B and Beidenkopf H 2018 Adv. Mater. 30 1707628
[34] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222
[1] Superconductivity in kagome metal ThRu3Si2
Yi Liu(刘艺), Jing Li(厉静), Wu-Zhang Yang(杨武璋), Jia-Yi Lu(卢佳依), Bo-Ya Cao(曹博雅), Hua-Xun Li(李华旬), Wan-Li Chai(柴万力), Si-Qi Wu(武思祺), Bai-Zhuo Li(李佰卓), Yun-Lei Sun(孙云蕾), Wen-He Jiao(焦文鹤), Cao Wang(王操), Xiao-Feng Xu(许晓峰), Zhi Ren(任之), and Guang-Han Cao(曹光旱). Chin. Phys. B, 2024, 33(5): 057401.
[2] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[3] Structure and superconducting properties of Ru1-xMox (x = 0.1—0.9) alloys
Yang Fu(付阳), Chunsheng Gong(龚春生), Zhijun Tu(涂志俊), Shangjie Tian(田尚杰), Shouguo Wang(王守国), and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(4): 047404.
[4] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[5] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[6] Effects of carrier density and interactions on pairing symmetry in a t2g model
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新). Chin. Phys. B, 2024, 33(1): 017404.
[7] Multi-band analysis on physical properties of superconducting FeSe films
Jian-Tao Che(车剑韬) and Chen-Xiao Ye(叶晨骁). Chin. Phys. B, 2023, 32(9): 097401.
[8] Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛). Chin. Phys. B, 2023, 32(4): 047201.
[9] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[10] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[11] In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5
Xiaoran Yang(杨晓冉), Qi Tang(唐绮), Qiuyun Zhou(周秋韵), Huaiping Wang(王怀平), Yi Li(李意), Xue Fu(付雪), Jiawen Zhang(张加文), Yu Song(宋宇), Huiqiu Yuan(袁辉球), Pengcheng Dai(戴鹏程), and Xingye Lu(鲁兴业). Chin. Phys. B, 2023, 32(12): 127101.
[12] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[13] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[14] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[15] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
No Suggested Reading articles found!