|
|
Observation of parabolic electron bands on superconductor LaRu2As2 |
Xingtai Zhou(周兴泰)1,2, Geng Li(李更)1,2,3,†, Lulu Pan(潘禄禄)1,2, Zichao Chen(陈子超)1,2, Meng Li(李萌)1,2, Yanhao Shi(时延昊)1,2, Haitao Yang(杨海涛)1,2, and Hong-Jun Gao(高鸿钧)1,2,3 |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract Ru-based superconductor LaRu$_{2}$As$_{2}$ has been discovered exhibiting the highest critical temperature of $\sim 7.8 $ K among iron-free transition metal pnictides with the ThCr$_{2}$Si$_{2}$-type crystal structure. However, microscopic research on this novel superconducting material is still lacking. Here, we utilize scanning tunneling microscopy/spectroscopy to uncover the superconductivity and surface structure of LaRu$_{2}$As$_{2}$. Two distinct terminating surfaces are identified on the cleaved crystals, namely, the As surface and the La surface. Atomic missing line defects are observed on the La surface. Both surfaces exhibit a superconducting gap of $\sim 1.0 $ meV. By employing quasiparticle interference techniques, we observe standing wave patterns near the line defects on the La atomic plane. These patterns are attributed to quasiparticle scattering from two electron type parabolic bands.
|
Received: 07 April 2024
Revised: 10 May 2024
Accepted manuscript online: 20 May 2024
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
68.35.Dv
|
(Composition, segregation; defects and impurities)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62488201 and 52072401), the National Key R&D Program of China (Grant No. 2019YFA0308500), the Chinese Academy of Sciences (Grant No. YSBR-003), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Geng Li
E-mail: gengli.iop@iphy.ac.cn
|
Cite this article:
Xingtai Zhou(周兴泰), Geng Li(李更), Lulu Pan(潘禄禄), Zichao Chen(陈子超), Meng Li(李萌), Yanhao Shi(时延昊), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Observation of parabolic electron bands on superconductor LaRu2As2 2024 Chin. Phys. B 33 077401
|
[1] Guo Q, Pan B J, Yu J, Ruan B B, Chen D Y, Wang X C, Mu Q G, Chen G F and Ren Z A 2016 Sci. Bull. 61 921 [2] Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J and Kotliar G 2022 Nature 601 35 [3] Li G, Li M, Zhou X and Gao H J 2024 Rep. Prog. Phys. 87 016501 [4] Li G, Zhu S, Wang D, Wang Y and Gao H J 2021 Supercond. Sci. Technol. 34 073001 [5] Li G, Zhu S, Fan P, Cao L and Gao H J 2022 Chin. Phys. B 31 080301 [6] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [7] Sasmal K, Lv B, Lorenz B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007 [8] Torikachvili M S, Bud’ko S L, Ni N and Canfield P C 2008 Phys. Rev. Lett. 101 057006 [9] Li M, Li G, Cao L, Zhou X, Wang X, Jin C, Chiu C K, Pennycook S J, Wang Z and Gao H J 2022 Nature 606 890 [10] Liu W, Cao L, Zhu S, Kong L, Wang G, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F, Kondo T, Du S, Cao G H, Shin S, Fu L, Yin Z, Gao H J and Ding H 2020 Nat. Commun. 11 5688 [11] Kong L, Cao L, Zhu S, Papaj M, Dai G, Li G, Fan P, Liu W, Yang F, Wang X, Du S, Jin C, Fu L, Gao H J and Ding H 2021 Nat. Commun. 12 4146 [12] Fan P, Chen H, Zhou X, Cao L, Li G, Li M, Qian G, Xing Y, Shen C, Wang X, Jin C, Gu G, Ding H and Gao H J 2023 Nano Lett. 23 4541 [13] Wang X, Gong D, Liu B, Ma X, Zhao J, Wang P, Sheng Y, Guo J, Sun L, Zhang W, Lai X, Tan S, Yang Y and Li S 2022 Chin. Phys. Lett. 39 107101 [14] Li J, Phan G N, Wang X, Yang F, Hu Q, Jia K, Zhao J, Liu W, Zhang R, Shi Y, Li S, Qian T and Ding H 2023 Chin. Phys. B 33 017401 [15] Grinenko V, Materne P, Sarkar R, Luetkens H, Kihou K, Lee C H, Akhmadaliev S, Efremov D V, Drechsler S L and Klauss H H 2017 Phys. Rev. B 95 214511 [16] Grinenko V, Sarkar R, Kihou K, Lee C H, Morozov I, Aswartham S, Büchner B, Chekhonin P, Skrotzki W, Nenkov K, Hühne R, Nielsch K, Drechsler S L, Vadimov V L, Silaev M A, Volkov P A, Eremin I, Luetkens H and Klauss H H 2020 Nat. Phys. 16 789 [17] Iguchi Y, Shi R A, Kihou K, Lee C H, Barkman M, Benfenati A L, Grinenko V, Babaev E and Moler K A 2023 Science 380 1244 [18] Zhao S Z, Song H Y, Hu L L, Xie T, Liu C, Luo H Q, Jiang C Y, Zhang X, Nie X C, Meng J Q, Duan Y X, Liu S B, Xie H Y and Liu H Y 2020 Phys. Rev. B 102 144519 [19] Luo J, Wang C, Wang Z, Guo Q, Yang J, Zhou R, Matano K, Oguchi T, Ren Z, Cao G and Zheng G Q 2020 Chin. Phys. B 29 067402 [20] Goodman B B 1966 Rep. Prog. Phys. 29 445 [21] Rosenstein B and Li D 2010 Rev. Mod. Phys. 82 109 [22] Hadi M A, Ali M S, Naqib S H and Islam A K M A 2017 Chin. Phys. B 26 037103 [23] Rahaman Md Z and Rahman Md A 2017 J. Alloys Compd. 695 2827 [24] Cao L, Song Y, Liu Y B, Zheng Q, Han G, Liu W, Li M, Chen H, Xing Y, Cao G H, Ding H, Lin X, Du S, Zhang Y Y, Li G, Wang Z and Gao H J 2021 Nano Res. 14 3921 [25] Li A, Yin J X, Wang J, Wu Z, Ma J, Sefat A S, Sales B C, Mandrus D G, McGuire M A, Jin R, Zhang C, Dai P, Lv B, Chu C W, Liang X, Hor P H, Ting C S and Pan S H 2019 Phys. Rev. B 99 134520 [26] Nascimento V B, Li A, Jayasundara D R, Xuan Y, O’Neal J, Pan S, Chien T Y, Hu B, He X B, Li G, Sefat A S, McGuire M A, Sales B C, Mandrus D, Pan M H, Zhang J, Jin R and Plummer E W 2009 Phys. Rev. Lett. 103 076104 [27] Liu X, Tao R, Ren M, Chen W, Yao Q, Wolf T, Yan Y, Zhang T and Feng D 2019 Nat. Commun. 10 1039 [28] Marshall M S J, Newell D T, Payne D J, Egdell R G and Castell M R 2011 Phys. Rev. B 83 035410 [29] Liu Y, Wei T, He G, Zhang Y, Wang Z and Wang J 2023 Nature 618 934 [30] Lee W C, Wu C, Arovas D P and Zhang S C 2009 Phys. Rev. B 80 245439 [31] Crommie M F, Lutz C P and Eigler D M 1993 Nature 363 524 [32] Hoffman J E, McElroy K, Lee D H, Lang K M, Eisaki H, Uchida S and Davis J C 2002 Science 297 1148 [33] Avraham N, Reiner J, Kumar-Nayak A, Morali N, Batabyal R, Yan B and Beidenkopf H 2018 Adv. Mater. 30 1707628 [34] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Ma S, Ni S, Zhang H, Yin Q, Gong C, Tu Z, Lei H, Tan H, Zhou S, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|