Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074205    DOI: 10.1088/1674-1056/ad3229
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Entangling two levitated charged nanospheres through Coulomb interaction

Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦)†
Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Limited by the thermal environment, the entanglement of a massive object is extremely difficult to generate. Based on a coherent scattering mechanism, we propose a scheme to generate the entanglement of two optically levitated nanospheres through the Coulomb interaction. Two nanospheres are charged and coupled to each other through the Coulomb interaction. In this manner, the entanglement of two nanospheres is induced either under a weak/strong optomechanical coupling regime or under an ultra-strong optomechanical coupling regime. The charges, radius and distance of the two nanospheres are taken into consideration to enhance the Coulomb interaction, thereby achieving a higher degree of entanglement in the absence of ground-state cooling. The corresponding maximum entanglement can be attained as the dynamics of the system approaches the boundary between the steady and the unsteady regimes. This provides a useful resource for both quantum-enhanced sensing and quantum information processing, as well as a new platform for studying many-body physics.
Keywords:  quantum entanglement      coherent scattering      Coulomb interaction  
Received:  22 December 2023      Revised:  12 February 2024      Accepted manuscript online:  11 March 2024
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: This research is supported by the National Natural Science Foundation of China (Grant No. 61771278) and the Beijing Institute of Technology Research Fund Program for Young Scholars.
Corresponding Authors:  Zhangqi Yin     E-mail:  zqyin@bit.edu.cn

Cite this article: 

Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦) Entangling two levitated charged nanospheres through Coulomb interaction 2024 Chin. Phys. B 33 074205

[1] Graham T M, Song Y, Scott J, et al. 2022 Nature 604 457
[2] Zhong Y, Chang H S, Bienfait A, et al. 2021 Nature 590 571
[3] Abdi M, Pirandola S, Tombesi P and Vitali D 2012 Phys. Rev. Lett. 109 143601
[4] Gilmore K A, Affolter M, Lewis-Swan R J, Barberena D, Jordan E, Rey A M and Bollinger J J 2021 Science 373 673
[5] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41
[6] Pompili M, Hermans S L, Baier S, et al. 2021 Science 372 259
[7] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
[8] Kotler S, Peterson G A, Shojaee, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds R W, José A and John D T 2021 Science 372 622
[9] Delić U, Reisenbauer M, Dare K, Grass D, Vuletić V, Kiesel N and Aspelmeyer M 2020 Science 367 892
[10] Ranfagni A, Børkje K, Marino F and Marin F 2022 Phys. Rev. Research 4 033051
[11] Jain V, Gieseler J, Moritz C, Dellago C, Quidant R and Novotny L 2016 Phys. Rev. Lett. 116 243601
[12] Rahman A A and Barker P 2016 Phys. Rev. A 107 013521
[13] Lepeshov S, Meyer N, Maurer P, Romero-Isart O and Quidant R 2023 Phys. Rev. Lett. 130 233601
[14] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[15] Tebbenjohanns F, Mattana M. L, Rossi M, Frimmer M and Novotny L 2021 Nature 595 378
[16] Magrini L, Rosenzweig P, Bach C, Deutschmann-Olek A, Hofer S G, Hong S, Kiesel N, Kugi A and Aspelmeyer M 2021 Nature 595 373
[17] Piotrowski J, Windey D, Vijayan J, Gonzalez-Ballestero C, de los Ríos Sommer A, Meyer N, Quidant R, Romero-Isart O, Reimann R and Novotny L 2023 Nat. Phys. 19 1009
[18] de los Ríos Sommer A, Meyer N and Quidant R 2021 Nat. Commun. 12 276
[19] Ranfagni A, Vezio P, Calamai M, Chowdhury A, Marino F and Marin F 2021 Nat. Phys. 17 1120
[20] Vijayan J, Piotrowski J, Gonzalez-Ballestero C, Weber K, Romero-Isart O and Novotny L 2023 arXiv:2308.14721
[21] Dare K, Hansen J J, Coroli I, Johnson A, Aspelmeyer M and Delić U 2023 arXiv:2305.16226
[22] Penny T, Pontin A and Barker P 2023 Phys. Rev. Research 5 013070
[23] Černotík O and Filip R 2020 Phys. Rev. Research 2 013052
[24] Pettit R M, Ge W, Kumar P, Luntz-Martin D R, Schultz J T, Neukirch L P, Bhattacharya M and Vamivakas A N 2019 Nat. Photonics 13 402
[25] Kuang T, Huang R, Xiong W, Zuo Y, Han X, Nori F, Qiu C W, Luo H, Jing H and Xiao G 2023 Nat. Phys. 19 414
[26] Rieser J, Ciampini M A, Rudolph H, Kiesel N, Hornberger K, Stickler B A, Aspelmeyer M and Delić U 2022 Science 377 987
[27] Zhu S C, Fu Z H, Gao X W, Li, C H, Chen Z M, Wang Y Y, Chen X F and Hu H Z 2023 Photonics Res. 11 279
[28] Ahn J, Xu Z J, Bang J, Ju P, Gao X Y and Li T C 2020 Nat. Nanotechnol. 15 89
[29] Millen J, Monteiro T S, Pettit R and Vamivakas A N 2020 Rep. Prog. Phys. 83 026401
[30] Gonzalez-Ballestero C, Aspelmeyer M, Novotny L, Quidant R and Romero-Isart O 2021 Science 374 3027
[31] Volpe G, Maragò O M, Rubinsztein-Dunlop H, et al. 2023 J. Phys.: Photonics 5 022501
[32] Rudolph H, Hornberger K and Stickler B A 2020 Phys. Rev. A 101 011804
[33] Brandão I, Tandeitnik D and Guerreiro T 2021 Quantum Sci. Technol. 6 045013
[34] Weiss T, Roda-Llordes M, Torrontegui E, Aspelmeyer M and RomeroIsart O 2021 Phys. Rev. Lett. 127 023601
[35] Rudolph H, Delić U, Aspelmeyer M, Hornberger K and Stickler B A 2022 Phys. Rev. Lett. 129 193602
[36] Gonzalez-Ballestero C, Maurer Patrick, Windey Dominik, Novotny L, Reimann R and Romero-Isart O 2019 Phys. Rev. A 100 013805
[37] Kockum A F, Miranowicz A, De Liberato S, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19
[38] Leroux C, Govia L and Clerk A A 2018 Phys. Rev. Lett. 120 093602
[39] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A 78 032316
[40] Vitali D, Gigan S, Ferreira A, Böhm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[41] Iwasaki M, Yotsuya T, Naruki T, Matsuda Y, Yoneda M and Aikawa K 2019 Phys. Rev. A 99 051401
[42] Beresnev S A and Chernyak V G and Fomyagin G A 1990 J. Fluid Mech. 219 405
[1] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[2] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[3] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[4] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[5] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[6] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[7] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[8] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[9] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[10] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[11] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[12] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[13] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[14] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[15] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
No Suggested Reading articles found!