|
|
Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain |
Chengchen Li(李承晨)1, Yi Cui(崔祎)1,2, Weiqiang Yu(于伟强)1,2, and Rong Yu(俞榕)1,2,† |
1 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China |
|
|
Abstract Motivated by recent experimental progress on the quasi-one-dimensional quantum magnet NiNb$_2$O$_6$, we study the spin dynamics of an $S=1$ ferromagnetic Heisenberg chain with single-ion anisotropy by using a semiclassical molecular dynamics approach. This system undergoes a quantum phase transition from a ferromagnetic to a paramagnetic state under a transverse magnetic field, and the magnetic response reflecting this transition is well described by our semiclassical method. We show that at low temperature the transverse component of the dynamical structure factor depicts clearly the magnon dispersion, and the longitudinal component exhibits two continua associated with single- and two-magnon excitations, respectively. These spin excitation spectra show interesting temperature dependence as effects of magnon interactions. Our findings shed light on the experimental detection of spin excitations in a large class of quasi-one-dimensional magnets.
|
Received: 24 January 2024
Revised: 04 April 2024
Accepted manuscript online: 09 April 2024
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1406500) and the National Natural Science Foundation of China (Grant Nos. 12334008, 12174441, 12134020, and 12374156). |
Corresponding Authors:
Rong Yu
E-mail: rong.yu@ruc.edu.cn
|
Cite this article:
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕) Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain 2024 Chin. Phys. B 33 067501
|
[1] Giamarchi T 2004 Quantum Physics in One Dimension (New York: Oxford Science) [2] Chen X, Gu Z C, Liu Z X and Wen X G 2012 Science 338 1604 [3] Cui Y, Zou H, Xi N, He Z Z, Yang Y X, Shu L, Zhang G H, Hu Z, Chen T, Yu R, Wu J D and Yu W Q 2019 Phys. Rev. Lett 123 067203 [4] Faure Q, Takayoshi S, Petit S, Simonet V, Raymond S, Regnault L P, Boehm M, White J S, Mansson M, Rüegg C, Lejay P, Canals B, Lorenz T, Furuya S C, Giamarchi T and Grenier B 2018 Nat. Phys. 14 716 [5] Wang Z, Wu J D, Yang W, Bera A K, Kamenskyi D, Islam A T M N, Xu S L, Law J M, Wu C J and Loidl A 2018 Nature 554 219 [6] Zou H Y, Cui Y, Wang X, Zhang Z, Yang J, Xu G, Okutani A, Hagiwara M, Matsuda M, Wang G, Mussardo G Hódsági K, Kormos M, He Z Z, Kimura S, Yu R, Yu W Q, Ma J and Wu J D 2021 Phys. Rev. Lett 127 077201 [7] Nikitin S E, Nishimoto S, Fan Y, Wu J, Wu L S, Sukhanov A S, Brando M, Pavlovskii N S, Xu J, Vasylechko L, Yu R and Podlesnyak A 2021 Nat. Commun. 12 3599 [8] Roberts B, Jiang S H and Motrunich O I 2019 Phys. Rev. B 99 165143 [9] Xi N and Yu R 2022 Chin. Phys. B 31 057501 [10] Schollwöck U, Richter J, Farnell D J J and Bishop R F 2008 Quantum Magnetism (Berlin Heidelberg: Springer) p. 307 [11] Coldea R, Tennant D A, Wheeler E M, Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P and Kiefer K 2010 Science 327 177 [12] Lee S B, Kaul R K and Balents L 2010 Nat. Phys. 6 702 [13] Kinross A W, Fu M, Munsie T J, Dabkowska H A, Luke G M, Sachdev S and Imai T 2014 Phys. Rev. X 4 031008 [14] Morris C M, Desai N, Viirok J, Huvonen D, Nagel D, R öom T, Krizan J W, Cava R J, McQueen T M, Koohpayeh S M, Kaul R K and Armitage N P 2021 Nat. Phys. 17 832 [15] Fava M, Coldea R and Parameswaran S A 2020 Proc. Nat. Acad. Sci. USA 117 25219 [16] Gallegos C A and Chernyshev A L arXiv 2312.03829 [17] Chauhan P, Mahmood F, Changlani H J, Koohpayeh S M and Armitage N P 2020 Phys. Rev. Lett. 124 037203 [18] Xu Y, Wang L S, Huang Y Y, Ni J M, Zhao C C, Dai Y F, Pan B Y, Hong X C, Chauhan P, Koohpayeh S M, Armitage N P and Li S Y 2022 Phys. Rev. X 12 021020 [19] Sharma P, Lee K and Changlani H J 2022 Phys. Rev. B 105 054413 [20] Nayak M and Mila F 2022 Phys. Rev. B 105 094407 [21] Chen K and Landau D P 1994 Phys. Rev. B 49 3266 [22] Bunker A, Chen K and Landau D P 1996 Phys. Rev. B 54 9259 [23] Weitzel V H 1976 Zeitschrift für Kristallographie 144 238 [24] Heid C, Weitzel H, Bourdarot F, Calemczuk R, Vogt T and Fuess H 1996 J. Phys. Condens. Matter 8 10609 [25] Yaeger I, Morrish A H and Wanklyn B M 1977 Phys. Rev. B 15 1465 [26] Brown F R and Woch T J 1987 Phys. Rev. Lett 58 2394 [27] Creutz M 1987 Phys. Rev. D 36 515 [28] Watson R E, Blume M and Vineyard G H 1969 Phys. Rev 181 811 [29] Burden R L, Fairas J D and Reynolds A C 2011 Numerical Analysis (Brooks/Cole Cengage Learning) p. 311 [30] Curley S P M, Scatena R, Williams R C, Goddard P A, Macchi P, Hicken T J, Lancaster T, Xiao F, Blundell S J, Zapf V, Eckert J C, Krenkel E H, Villa J A, Rhodehouse M L and Manson J L 2021 Phys. Rev. Mater. 5 034401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|