ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings |
Zelin Tan(谭泽林)1,2, Jianfa Zhang(张检发)1,2, Zhihong Zhu(朱志宏)1,2, Wei Chen(陈伟)3, Zhengzheng Shao(邵铮铮)4,†, Ken Liu(刘肯)1,2,‡, and Shiqiao Qin(秦石乔)1,2,§ |
1 College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China; 2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China; 3 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China; 4 School of Physics, Central South University, Changsha 410083, China |
|
|
Abstract Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in the waveguide is generally considered to be caused by shape birefringence, like curvature, morphology of waveguide cross section and scattering. Here, we study the polarization conversion mechanism in 1-THz-FSR X-cut lithium niobate microrings with multiple-resonance condition, that is the conversion can be implemented by birefringence of waveguides, which will also introduce an avoided-mode crossing. In the experiment, we find that this mode crossing results in severe suppression of one sideband in local nondegenerate four-wave mixing and disrupts the cascaded four-wave mixing on this side. Simultaneously, we propose one two-dimensional method to simulate the eigenmodes (TE and TM) in X-cut microrings, and the mode crossing point. This work will provide one approach to the design of polarization converters and simulation for monolithic photonics integrated circuits, and may be helpful to the studies of missed temporal dissipative soliton formation in X-cut lithium niobate rings.
|
Received: 24 April 2024
Revised: 30 April 2024
Accepted manuscript online: 06 May 2024
|
PACS:
|
42.81.Gs
|
(Birefringence, polarization)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
42.82.-m
|
(Integrated optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274462 and 11674396), the Department of Science and Technology of Hunan Province of China (Grant Nos. 2017RS3039 and 2018JJ1033), and the Hunan Provincial Innovation Foundation for Postgraduate of China (Grant No. QL20210006). |
Corresponding Authors:
Zhengzheng Shao, Ken Liu, Shiqiao Qin
E-mail: zzshao_nudt@163.com;liukener@163.com;sqqin8@nudt.edu.cn
|
Cite this article:
Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔) Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings 2024 Chin. Phys. B 33 064205
|
[1] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304 [2] Shi Z, Zhu A Y, Li Z, Huang Y W, Chen W T, Qiu C W and Capasso F 2020 Sci. Adv. 6 3367 [3] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B and Capasso F 2017 Phys. Rev. Lett. 118 113901 [4] Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M and Li Y 2014 J. Appl. Phys. 115 154504 [5] Wang J, Bonneau D, Villa M, Silverstone J W, Santagati R, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O’Brien J L and Thompson M G 2016 Optica 3 407 [6] Melloni A, Morichetti F and Martinelli M 2004 Opt. Lett. 29 2785 [7] Morichetti F, Melloni A and Martinelli M 2006 J. Lightwave Technol. 24 573 [8] Ramelow S, Farsi A, Clemmen S, Levy J S, Johnson A R, Okawachi Y, Lamont Michael R E, Lipson M and Gaeta A L 2014 Opt. Lett. 39 5134 [9] Weng W and Luiten A N 2015 Opt. Lett. 40 5431 [10] Ke L, Rajagopal S R and Rosenberger A T 2021 Phys. Rev. A 104 053534 [11] Pan A, Hu C, Zeng C and Xia J 2019 Opt. Express 27 35659 [12] Wang J, Chen P, Dai D and Liu L 2020 IEEE Photonics J. 12 1 [13] Ma M, Yuan M, Zhou X, Xiao H, Cao P, Cheng L, Nguyen T G, Boes A, Ren G, Su Y, Mitchell A and Tian Y 2023 Laser Photonics Rev. 17 2200862 [14] Zhao W, Liu R, Zhu M, Guo Z, He J, Li H, Pan B, Yu Z, Liu L, Shi Y and Dai D 2023 Laser Photonics Rev. 17 2200774 [15] Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A and Bakhru H 1998 Appl. Phys. Lett. 73 2293 [16] Rabiei P and Gunter P 2004 Appl. Phys. Lett. 85 4603 [17] Zhang M, Wang C, Cheng R, Shams-Ansari A and Lončar M 2017 Optica 4 1536 [18] Desiatov B, Shams-Ansari A, Zhang M, Wang C and Lončar M 2019 Optica 6 380 [19] Wolf R, Breunig I, Zappe H and Buse K 2018 Opt. Express 26 19815 [20] Lin J, Bo F, Cheng Y and Xu J 2020 Photonics Res. 8 1910 [21] Gao R, Yao N, Guan J, Deng L, Lin J, Wang M, Qiao L, Fang W and Cheng Y 2022 Chin. Opt. Lett. 20 011902 [22] Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer C, Zhang M and Lončar M 2021 Adv. Opt. Photonics 13 242 [23] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Nature 562 101 [24] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photonics 13 359 [25] Rao A, Patil A, Rabiei P, Honardoost A, DeSalvo R, Paolella A and Fathpour S 2016 Opt. Lett. 41 5700 [26] Chang L, Li Y, Volet N, Wang L, Peters J and Bowers J E 2016 Optica 3 531 [27] Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Lončar M 2018 Optica 5 1438 [28] Wang C, Zhang M, Yu M, Zhu R, Hu H and Lončar M 2019 Nat. Commun. 10 978 [29] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M and Lončar M 2019 Nature 568 373 [30] Kang S, Lv X, Yang C, Ma R, Gao F, Yu X, Bo F, Zhang G and Xu J 2024 Materials 17 1190 [31] Carmon T, Yang L and Vahala K J 2004 Opt. Express 12 4742 [32] Lin J, Xu Y, Ni J, Wang M, Fang Z, Qiao L, Fang W and Cheng Y 2016 Phys. Rev. Appl. 6 014002 [33] Lin J, Yao N, Hao Z, Zhang J, Mao W, Wang M, Chu W, Wu R, Fang Z, Qiao L, Fang W, Bo F and Cheng Y 2019 Phys. Rev. Lett. 122 173903 [34] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photonics 8 145 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|