Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064205    DOI: 10.1088/1674-1056/ad47b2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings

Zelin Tan(谭泽林)1,2, Jianfa Zhang(张检发)1,2, Zhihong Zhu(朱志宏)1,2, Wei Chen(陈伟)3, Zhengzheng Shao(邵铮铮)4,†, Ken Liu(刘肯)1,2,‡, and Shiqiao Qin(秦石乔)1,2,§
1 College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China;
2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China;
3 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China;
4 School of Physics, Central South University, Changsha 410083, China
Abstract  Compared with well-developed free space polarization converters, polarization conversion between TE and TM modes in the waveguide is generally considered to be caused by shape birefringence, like curvature, morphology of waveguide cross section and scattering. Here, we study the polarization conversion mechanism in 1-THz-FSR X-cut lithium niobate microrings with multiple-resonance condition, that is the conversion can be implemented by birefringence of waveguides, which will also introduce an avoided-mode crossing. In the experiment, we find that this mode crossing results in severe suppression of one sideband in local nondegenerate four-wave mixing and disrupts the cascaded four-wave mixing on this side. Simultaneously, we propose one two-dimensional method to simulate the eigenmodes (TE and TM) in X-cut microrings, and the mode crossing point. This work will provide one approach to the design of polarization converters and simulation for monolithic photonics integrated circuits, and may be helpful to the studies of missed temporal dissipative soliton formation in X-cut lithium niobate rings.
Keywords:  polarization conversion      birefringence      nondegenerate four-wave mixing  
Received:  24 April 2024      Revised:  30 April 2024      Accepted manuscript online:  06 May 2024
PACS:  42.81.Gs (Birefringence, polarization)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  42.82.-m (Integrated optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274462 and 11674396), the Department of Science and Technology of Hunan Province of China (Grant Nos. 2017RS3039 and 2018JJ1033), and the Hunan Provincial Innovation Foundation for Postgraduate of China (Grant No. QL20210006).
Corresponding Authors:  Zhengzheng Shao, Ken Liu, Shiqiao Qin     E-mail:  zzshao_nudt@163.com;liukener@163.com;sqqin8@nudt.edu.cn

Cite this article: 

Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔) Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings 2024 Chin. Phys. B 33 064205

[1] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[2] Shi Z, Zhu A Y, Li Z, Huang Y W, Chen W T, Qiu C W and Capasso F 2020 Sci. Adv. 6 3367
[3] Balthasar Mueller J P, Rubin N A, Devlin R C, Groever B and Capasso F 2017 Phys. Rev. Lett. 118 113901
[4] Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M and Li Y 2014 J. Appl. Phys. 115 154504
[5] Wang J, Bonneau D, Villa M, Silverstone J W, Santagati R, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O’Brien J L and Thompson M G 2016 Optica 3 407
[6] Melloni A, Morichetti F and Martinelli M 2004 Opt. Lett. 29 2785
[7] Morichetti F, Melloni A and Martinelli M 2006 J. Lightwave Technol. 24 573
[8] Ramelow S, Farsi A, Clemmen S, Levy J S, Johnson A R, Okawachi Y, Lamont Michael R E, Lipson M and Gaeta A L 2014 Opt. Lett. 39 5134
[9] Weng W and Luiten A N 2015 Opt. Lett. 40 5431
[10] Ke L, Rajagopal S R and Rosenberger A T 2021 Phys. Rev. A 104 053534
[11] Pan A, Hu C, Zeng C and Xia J 2019 Opt. Express 27 35659
[12] Wang J, Chen P, Dai D and Liu L 2020 IEEE Photonics J. 12 1
[13] Ma M, Yuan M, Zhou X, Xiao H, Cao P, Cheng L, Nguyen T G, Boes A, Ren G, Su Y, Mitchell A and Tian Y 2023 Laser Photonics Rev. 17 2200862
[14] Zhao W, Liu R, Zhu M, Guo Z, He J, Li H, Pan B, Yu Z, Liu L, Shi Y and Dai D 2023 Laser Photonics Rev. 17 2200774
[15] Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A and Bakhru H 1998 Appl. Phys. Lett. 73 2293
[16] Rabiei P and Gunter P 2004 Appl. Phys. Lett. 85 4603
[17] Zhang M, Wang C, Cheng R, Shams-Ansari A and Lončar M 2017 Optica 4 1536
[18] Desiatov B, Shams-Ansari A, Zhang M, Wang C and Lončar M 2019 Optica 6 380
[19] Wolf R, Breunig I, Zappe H and Buse K 2018 Opt. Express 26 19815
[20] Lin J, Bo F, Cheng Y and Xu J 2020 Photonics Res. 8 1910
[21] Gao R, Yao N, Guan J, Deng L, Lin J, Wang M, Qiao L, Fang W and Cheng Y 2022 Chin. Opt. Lett. 20 011902
[22] Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer C, Zhang M and Lončar M 2021 Adv. Opt. Photonics 13 242
[23] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P and Lončar M 2018 Nature 562 101
[24] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L and Cai X 2019 Nat. Photonics 13 359
[25] Rao A, Patil A, Rabiei P, Honardoost A, DeSalvo R, Paolella A and Fathpour S 2016 Opt. Lett. 41 5700
[26] Chang L, Li Y, Volet N, Wang L, Peters J and Bowers J E 2016 Optica 3 531
[27] Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Lončar M 2018 Optica 5 1438
[28] Wang C, Zhang M, Yu M, Zhu R, Hu H and Lončar M 2019 Nat. Commun. 10 978
[29] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J M and Lončar M 2019 Nature 568 373
[30] Kang S, Lv X, Yang C, Ma R, Gao F, Yu X, Bo F, Zhang G and Xu J 2024 Materials 17 1190
[31] Carmon T, Yang L and Vahala K J 2004 Opt. Express 12 4742
[32] Lin J, Xu Y, Ni J, Wang M, Fang Z, Qiao L, Fang W and Cheng Y 2016 Phys. Rev. Appl. 6 014002
[33] Lin J, Yao N, Hao Z, Zhang J, Mao W, Wang M, Chu W, Wu R, Fang Z, Qiao L, Fang W, Bo F and Cheng Y 2019 Phys. Rev. Lett. 122 173903
[34] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photonics 8 145
[1] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[2] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[3] Transmission-type reconfigurable metasurface for linear-to-circular and linear-to-linear polarization conversions
Ping Wang(王平), Yu Wang(王豫), Zhongming Yan(严仲明), and Hongcheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(12): 124201.
[4] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[5] Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁). Chin. Phys. B, 2022, 31(1): 014211.
[6] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[7] Multi-band asymmetric transmissions based on bi-layer windmill-shaped metamaterial
Ying-Hua Wang(王英华), Jie Li(李杰), Zheng-Gao Dong(董正高), Yan Li(李妍), and Xu Zhang(张旭). Chin. Phys. B, 2021, 30(11): 114216.
[8] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[9] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[10] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[11] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[12] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[13] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[14] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[15] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
No Suggested Reading articles found!