ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Pulse shaping of bright-dark vector soliton pair |
Yan Zhou(周延)1, Yuefeng Li(李月锋)1, Xia Li(李夏)2, Meisong Liao(廖梅松)2, Jingshan Hou(侯京山)3, Yongzheng Fang(房永征)3 |
1 School of Science, Shanghai Institute of Technology, Shanghai 201418, China; 2 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 3 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China |
|
|
Abstract We simulate pulse shaping of bright-dark vector soliton pair in an optical fiber system. Through changing input pulse parameters (amplitude ratio, projection angle, time delay, and phase difference), different kinds of pulse shapes and spectra can be generated. For input bright-dark vector soliton pair with the same central wavelength, "2+1"- and "2+2"-type pseudo-high-order bright-dark vector soliton pairs are achieved. While for the case of different central wavelengths, bright-dark vector soliton pairs with multiple pulse peaks/dips are demonstrated with appropriate pulse parameter setting.
|
Received: 05 January 2020
Revised: 19 January 2020
Accepted manuscript online:
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504500) and the National Natural Science Foundation of China (Grant No. 51672177). |
Corresponding Authors:
Yan Zhou
E-mail: yzhou@sit.edu.cn
|
Cite this article:
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征) Pulse shaping of bright-dark vector soliton pair 2020 Chin. Phys. B 29 054202
|
[1] |
Song Y F, Shi X J, Wu C F, Tang D Y and Zhang H 2019 Appl. Phys. Rev. 6 021313
|
[2] |
Luo Z C, Liu M, Luo A P and Xu W C 2018 Chin. Phys. B 27 094215
|
[3] |
Zhou Y, Zhang R L, Li X, Kuan P W, He D Y, Hou J S, Liu Y F, Fang Y Z and Liao M S 2019 Chin. Phys. B 28 094203
|
[4] |
Chen S, Xu Y, Cai Y, Shen J P and Zhang Z X 2019 J. Opt. Soc. Am. B 36 2688
|
[5] |
Yin K, Li Y M, Wang Y B, Zheng X and Jiang T 2019 Chin. Phys. B 28 124203
|
[6] |
Wang Z Q, Zhan L, Fang X and Luo H 2017 J. Opt. Soc. Am. B 34 2325
|
[7] |
Chong A, Wright L G and Wise F W 2015 Rep. Prog. Phys. 78 113901
|
[8] |
Duan L N, Wen J, Fan W and Wang W 2017 Chin. Phys. B 26 104205
|
[9] |
Zhou Y, Zhang R L, Chen P, Liu Y F, Fang Y Z, Wang T X, Li X, Kuan P W and Liao M S 2019 Laser Phys. 29 055101
|
[10] |
Luo Z C, Lin Z B, Li J Y, Zhu P F, Ning Q Y, Xing X B, Luo A P and Xu W C 2014 Chin. Phys. B 23 064203
|
[11] |
Zheng Y, Tian J R, Dong Z K, Xu R Q, Li K X and Song Y R 2017 Chin. Phys. B 26 074212
|
[12] |
Wang H C, Wei Y D, Huang X Y, Chen G H and Ye H 2018 Chin. Phys. B 27 044203
|
[13] |
Zhao J Q, Zhou J, Li L, Zhao L M, Tang D Y, Shen D Y and Su L 2019 Opt. Lett. 44 2414
|
[14] |
Xiong Z J, Xu Q and Ling L M 2019 Chin. Phys. B 28 120201
|
[15] |
Liu B W, Luo Y Y, Xiang Y, Xiao X P, Sun Q Z, Liu D M and Shum P P 2018 Opt. Express 26 27461
|
[16] |
Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
|
[17] |
Liu X M and Pang M 2019 Laser Photon. Rev. 13 1800333
|
[18] |
Liu X M and Cui Y D 2019 Adv. Photon. 1 016003
|
[19] |
Liu X M, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901
|
[20] |
Balla P and Agrawal G P 2018 J. Opt. Soc. Am. B 35 2302
|
[21] |
Cundiff S T, Collings B C, Akhmediev N N, Soto-Crespo J M, Bergman K and Knox W H 1999 Phys. Rev. Lett. 82 3988
|
[22] |
Collings B C, Cundiff S T, Akhmediev N N, Soto-Crespo J M, Bergman K, Knox W H 2000 J. Opt. Soc. Am. B 17 354
|
[23] |
Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett. 101 153904
|
[24] |
Jin X X, Wu Z C, Li L, Zhang Q, Tang D Y, Shen D Y, Fu S N, Liu D M and Zhao L M 2016 IEEE Photon. J. 8 1501206
|
[25] |
Wang X, Li L, Geng Y, Wang H X, Su L and Zhao L M 2018 Appl. Opt. 57 746
|
[26] |
Xiang Y, Luo Y Y, Liu B W, Xia R, Shum P P, Tang X H, Liu D M and Sun Q Z 2019 J. Lightwave Technol. 37 5108
|
[27] |
Zhu S N, Wu Z C, Fu S N and Zhao L M 2018 Appl. Opt. 57 2064
|
[28] |
Zhao L M, Tang D Y and Wu X 2008 Opt. Express 16 10053
|
[29] |
Liu M, Luo A P, Luo Z C and Xu W C 2017 Opt. Lett. 42 330
|
[30] |
Willner A E, Wang J and Huang H 2012 Science 337 655
|
[31] |
Su Y L, Feng H, Hu H, Wang W, Duan T, Wang Y S, Si J H, Xie X P, Yang H N and Huang X N 2019 Chin. Phys. B 28 024216
|
[32] |
Ma J, Shao G D, Song Y F, Zhao L M, Xiang Y J, Shen D Y, Richardson M and Tang D Y 2019 Opt. Lett. 44 2185
|
[33] |
Hu X, Guo J, Shao G D, Song Y F, Yoo S W, Malomed B A and Tang D Y 2019 Opt. Express 27 18311
|
[34] |
Zhou Y, Li Y F, Zhang R L, Wang T X, Bi W J, Li X, Kuan P W, Fang Y Z and Liao M S 2019 Optik 194 163132
|
[35] |
Zhou Y, Li Y F, Li X, Zhao G Y, Hou J S, Zou J, Fang Y Z and Liao M S 2020 Optik 203 163925
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|