1 Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China; 2 Center for THz Research, China Jiliang University, Hangzhou 310018, China; 3 College of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China; 4 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract The terahertz technology has attracted considerable attention because of its potential applications in various fields. However, the research of functional devices, including polarization converters, remains a major demand for practical applications. In this work, a reflective dual-functional terahertz metadevice is presented, which combines two different polarization conversions through using a switchable metasurface. Different functions can be achieved because of the insulator-to-metal transition of vanadium dioxide (VO2). At room temperature, the metadevice can be regarded as a linear-to-linear polarization convertor containing a gold circular split-ring resonator (CSRR), first polyimide (PI) spacer, continuous VO2 film, second PI spacer, and gold substrate. The converter possesses a polarization conversion ratio higher than 0.9 and a bandwidth ratio of 81% in a range from 0.912 THz to 2.146 THz. When the temperature is above the insulator-to-metal transition temperature (approximately 68 ℃) and VO2 becomes a metal, the metasurface transforms into a wideband linear-to-circular polarization converter composed of the gold CSRR, first PI layer, and continuous VO2 film. The ellipticity is close to -1, while the axis ratio is lower than 3 dB in a range of 1.07 THz-1.67 THz. The metadevice also achieves a large angle tolerance and large manufacturing tolerance.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001444), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ20F010009), the Basic Public Welfare Research Project of Zhejiang Province, China (Grant No. LGF19F010003), and the State Key Laboratory of Crystal Materials, Shandong University, China (Grant No. KF1909).
Corresponding Authors:
De-Xian Yan
E-mail: yandexian1991@163.com
Cite this article:
De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁) Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface 2022 Chin. Phys. B 31 014211
[1] Dang S P, Amin O, Shihada B and Alouini M S 2020 Nat. Electron.3 20 [2] Li X J, Cheng G, Yan D X, Hou X M, Qiu G H, Li J S, Li J N, Guo S H and W. D. Zhou W 2021 Opt. Lett.46 290 [3] Li X J, Liu Z H, Yan D X, Li J N, Li J S, Qiu G H, Hou X M and Cheng G 2020 J. Phys. D: Appl. Phys.53 505301 [4] Zang X F, Ding H Z, Intaravanne Y, Chen L, Peng Y, Xie J Y, Ke Q H, Balakin A V, Shkurinov A P, Chen X Z, Zhu Y M and Zhuang S L 2019 Laser Photon. Rev.13 1900182 [5] Yu P, Besteiro L V, Huang Y. J, Wu J, Fu L, Tan H. K, Jagadish C, Wiederreche G P, Govorov A O and Wang Z M 2019 Adv. Opt. Mater.7 1800995 [6] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D and Zhang H Y 2018 Opt. Mater. Express8 3238 [7] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B29 104205 [8] Li F X, Chen H Y, Zhang L B, Zhou Y, Xie J L, Deng L J and Harris V G 2019 IEEE T Microw. Theor.67 607 [9] Yang C, Gao Q, Dai L, Zhang Y, Zhang H and Zhang Y 2020 Opt. Mater. Express10 2289 [10] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B29 094202 [11] Lèvesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R and Pelouard J 2014 Appl. Phys. Lett.104 111105 [12] Pfeiffer C, Zhang C, Ray V, Guo L J and Grbic A 2016 Optica3 427 [13] Liu D and Dai D 2019 Opt. Express27 20704 [14] Kawai K, Sakamoto M, Noda K, Sasaki T, Kawatsuki N and Ono H 2017 J. Appl. Phys.121 013102 [15] Jiang Y N, Zhao H P, Wang L, Wang J, Cao W P and Wang Y Y 2019 Opt. Mater. Express9 2088 [16] Huang Y, Zhou Y and Wu S T 2007 Opt. Express15 6414 [17] Bu T, Chen K, Liu H, Liu J, Hong Z and Zhuang S 2016 Photon. Res.4 122 [18] Ding F, Chen Y T and Bozhevolnyi S I 2020 Photon. Res.8 707 [19] Tang B, Jia Z P, Huang L, Su J B and Jiang C 2020 IEEE J. Sel. Top. Quantum Electron.27 4700406 [20] Jia Z P, Huang L, Su J B and Tang B 2021 J. Lightwave Tech.39 1544 [21] Ren Y, Zhou T L, Jiang C and Tang B 2021 Opt. Express29 7666 [22] Dai L L, Zhang Y P, O'Hara J F and Zhang H Y 2019 Opt. Express27 35784 [23] Liu H, Lu J and Wang X R 2018 Nanotechnology29 024002 [24] Lei L, Lou F, Tao K Y, Huang H X, Cheng X and Xu P 2019 Photon. Res.7 734 [25] Liu W W and Song Z Y 2020 Carbon174 617 [26] Chen L L and Song Z Y 2020 Opt. Express28 6565 [27] Wang T L, Zhang Y P, Zhang H Y and Cao M Y 2020 Opt. Mater. Express10 369 [28] Wang T. L, Zhang H Y Zhang Y P and Cao M Y 2020 Results Phys.19 103484 [29] Ding F, Zhong S M and Bozhevolnyi S I 2018 Adv. Opt. Mater.6 1701204 [30] Wang T L, Zhang H Y, Zhang Y, Zhang Y P and Cao M Y 2020 Opt. Express28 17434 [31] Yan D X, Meng M, Li J S, Li J N and Li X J 2020 Opt. Express28 29843 [32] Zhang M and Song Z Y 2020 Opt. Express28 11780 [33] Zhao X, Yuan C, Lv W, Xu S and Yao J 2015 IEEE Photon. Technol. Lett.27 1321 [34] Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T and Yao J Q 2020 Adv. Theory Simul.3 1900183 [35] Liu H, Wang Z H, Li L, Fan Y X and Tao Z Y 2019 Sci. Rep.9 5751 [36] Walther M, Cooke D G, Sherstan C, et al. 2007 Phys. Rev. B76 125408 [37] Choi H S, Ahn J S, Jung J H, et al. 1996 Phys. Rev. B54 4621 [38] Liu H, Fan Y X, Chen H G, Li L and Tao Z Y 2019 Opt. Commun.445 277 [39] Song Z Y and Zhang J H 2020 Opt. Express28 12487 [40] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett.105 181111 [41] Jiang Y N, Wang L, Wang J, Akwuruoha C N and Cao W P 2017 Opt. Express25 27616 [42] Zi J C, Li Y F, Feng X, Xu Q, Liu H C, Zhang X X, Han J G and Zhang W L 2020 Phys. Rev. Appl.13 034042 [43] Quader S, Zhang J, Akram M R and Zhu W R 2020 IEEE J. Select. Top. Quantum Electron.26 4501008 [44] Li Y, Zhang J, Qu S, Wang J, Zheng L, Pang Y, Xu Z and Zhang A 2015 J. Appl. Phys.117 044501 [45] Zhang C H, Zhou G H, Wu J B, Tang Y H, Wen Q Y, Li S X, Han J G, Jin B B, Chen J and Wu P H 2019 Phys. Rev. Appl.11 054016 [46] Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G and Zhang W L 2019 Adv. Opt. Mater.7 1900175 [47] Li X, Tang S, Ding F, Zhong S, Yang Y, Jiang T and Zhou J 2019 Sci. Rep.9 5454 [48] Hou Y Z, Zhang C and Wang C R 2020 IEEE Access8 140303 [49] Fan J P and Cheng Y Z 2020 J. Phys. D: Appl. Phys.53 025109
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.