Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014211    DOI: 10.1088/1674-1056/ac05a7

Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface

De-Xian Yan(严德贤)1,2,4,†, Qin-Yin Feng(封覃银)1,2, Zi-Wei Yuan(袁紫微)1,2, Miao Meng(孟淼)1,2, Xiang-Jun Li(李向军)1,2, Guo-Hua Qiu(裘国华)1,2, and Ji-Ning Li(李吉宁)3
1 Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China;
2 Center for THz Research, China Jiliang University, Hangzhou 310018, China;
3 College of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin 300072, China;
4 State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  The terahertz technology has attracted considerable attention because of its potential applications in various fields. However, the research of functional devices, including polarization converters, remains a major demand for practical applications. In this work, a reflective dual-functional terahertz metadevice is presented, which combines two different polarization conversions through using a switchable metasurface. Different functions can be achieved because of the insulator-to-metal transition of vanadium dioxide (VO2). At room temperature, the metadevice can be regarded as a linear-to-linear polarization convertor containing a gold circular split-ring resonator (CSRR), first polyimide (PI) spacer, continuous VO2 film, second PI spacer, and gold substrate. The converter possesses a polarization conversion ratio higher than 0.9 and a bandwidth ratio of 81% in a range from 0.912 THz to 2.146 THz. When the temperature is above the insulator-to-metal transition temperature (approximately 68 ℃) and VO2 becomes a metal, the metasurface transforms into a wideband linear-to-circular polarization converter composed of the gold CSRR, first PI layer, and continuous VO2 film. The ellipticity is close to -1, while the axis ratio is lower than 3 dB in a range of 1.07 THz-1.67 THz. The metadevice also achieves a large angle tolerance and large manufacturing tolerance.
Keywords:  metasurface      polarization conversion      vanadium dioxide      dual-functional  
Received:  12 April 2021      Revised:  14 May 2021      Accepted manuscript online:  27 May 2021
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001444), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ20F010009), the Basic Public Welfare Research Project of Zhejiang Province, China (Grant No. LGF19F010003), and the State Key Laboratory of Crystal Materials, Shandong University, China (Grant No. KF1909).
Corresponding Authors:  De-Xian Yan     E-mail:

Cite this article: 

De-Xian Yan(严德贤), Qin-Yin Feng(封覃银), Zi-Wei Yuan(袁紫微), Miao Meng(孟淼), Xiang-Jun Li(李向军), Guo-Hua Qiu(裘国华), and Ji-Ning Li(李吉宁) Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface 2022 Chin. Phys. B 31 014211

[1] Dang S P, Amin O, Shihada B and Alouini M S 2020 Nat. Electron. 3 20
[2] Li X J, Cheng G, Yan D X, Hou X M, Qiu G H, Li J S, Li J N, Guo S H and W. D. Zhou W 2021 Opt. Lett. 46 290
[3] Li X J, Liu Z H, Yan D X, Li J N, Li J S, Qiu G H, Hou X M and Cheng G 2020 J. Phys. D: Appl. Phys. 53 505301
[4] Zang X F, Ding H Z, Intaravanne Y, Chen L, Peng Y, Xie J Y, Ke Q H, Balakin A V, Shkurinov A P, Chen X Z, Zhu Y M and Zhuang S L 2019 Laser Photon. Rev. 13 1900182
[5] Yu P, Besteiro L V, Huang Y. J, Wu J, Fu L, Tan H. K, Jagadish C, Wiederreche G P, Govorov A O and Wang Z M 2019 Adv. Opt. Mater. 7 1800995
[6] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D and Zhang H Y 2018 Opt. Mater. Express 8 3238
[7] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205
[8] Li F X, Chen H Y, Zhang L B, Zhou Y, Xie J L, Deng L J and Harris V G 2019 IEEE T Microw. Theor. 67 607
[9] Yang C, Gao Q, Dai L, Zhang Y, Zhang H and Zhang Y 2020 Opt. Mater. Express 10 2289
[10] Wu J Y, Xu X F and Wei L F 2020 Chin. Phys. B 29 094202
[11] Lèvesque Q, Makhsiyan M, Bouchon P, Pardo F, Jaeck J, Bardou N, Dupuis C, Haïdar R and Pelouard J 2014 Appl. Phys. Lett. 104 111105
[12] Pfeiffer C, Zhang C, Ray V, Guo L J and Grbic A 2016 Optica 3 427
[13] Liu D and Dai D 2019 Opt. Express 27 20704
[14] Kawai K, Sakamoto M, Noda K, Sasaki T, Kawatsuki N and Ono H 2017 J. Appl. Phys. 121 013102
[15] Jiang Y N, Zhao H P, Wang L, Wang J, Cao W P and Wang Y Y 2019 Opt. Mater. Express 9 2088
[16] Huang Y, Zhou Y and Wu S T 2007 Opt. Express 15 6414
[17] Bu T, Chen K, Liu H, Liu J, Hong Z and Zhuang S 2016 Photon. Res. 4 122
[18] Ding F, Chen Y T and Bozhevolnyi S I 2020 Photon. Res. 8 707
[19] Tang B, Jia Z P, Huang L, Su J B and Jiang C 2020 IEEE J. Sel. Top. Quantum Electron. 27 4700406
[20] Jia Z P, Huang L, Su J B and Tang B 2021 J. Lightwave Tech. 39 1544
[21] Ren Y, Zhou T L, Jiang C and Tang B 2021 Opt. Express 29 7666
[22] Dai L L, Zhang Y P, O'Hara J F and Zhang H Y 2019 Opt. Express 27 35784
[23] Liu H, Lu J and Wang X R 2018 Nanotechnology 29 024002
[24] Lei L, Lou F, Tao K Y, Huang H X, Cheng X and Xu P 2019 Photon. Res. 7 734
[25] Liu W W and Song Z Y 2020 Carbon 174 617
[26] Chen L L and Song Z Y 2020 Opt. Express 28 6565
[27] Wang T L, Zhang Y P, Zhang H Y and Cao M Y 2020 Opt. Mater. Express 10 369
[28] Wang T. L, Zhang H Y Zhang Y P and Cao M Y 2020 Results Phys. 19 103484
[29] Ding F, Zhong S M and Bozhevolnyi S I 2018 Adv. Opt. Mater. 6 1701204
[30] Wang T L, Zhang H Y, Zhang Y, Zhang Y P and Cao M Y 2020 Opt. Express 28 17434
[31] Yan D X, Meng M, Li J S, Li J N and Li X J 2020 Opt. Express 28 29843
[32] Zhang M and Song Z Y 2020 Opt. Express 28 11780
[33] Zhao X, Yuan C, Lv W, Xu S and Yao J 2015 IEEE Photon. Technol. Lett. 27 1321
[34] Li J, Yang Y, Li J N, Zhang Y T, Zhang Z, Zhao H L, Li F Y, Tang T T, Dai H T and Yao J Q 2020 Adv. Theory Simul. 3 1900183
[35] Liu H, Wang Z H, Li L, Fan Y X and Tao Z Y 2019 Sci. Rep. 9 5751
[36] Walther M, Cooke D G, Sherstan C, et al. 2007 Phys. Rev. B 76 125408
[37] Choi H S, Ahn J S, Jung J H, et al. 1996 Phys. Rev. B 54 4621
[38] Liu H, Fan Y X, Chen H G, Li L and Tao Z Y 2019 Opt. Commun. 445 277
[39] Song Z Y and Zhang J H 2020 Opt. Express 28 12487
[40] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S and Abbott D 2014 Appl. Phys. Lett. 105 181111
[41] Jiang Y N, Wang L, Wang J, Akwuruoha C N and Cao W P 2017 Opt. Express 25 27616
[42] Zi J C, Li Y F, Feng X, Xu Q, Liu H C, Zhang X X, Han J G and Zhang W L 2020 Phys. Rev. Appl. 13 034042
[43] Quader S, Zhang J, Akram M R and Zhu W R 2020 IEEE J. Select. Top. Quantum Electron. 26 4501008
[44] Li Y, Zhang J, Qu S, Wang J, Zheng L, Pang Y, Xu Z and Zhang A 2015 J. Appl. Phys. 117 044501
[45] Zhang C H, Zhou G H, Wu J B, Tang Y H, Wen Q Y, Li S X, Han J G, Jin B B, Chen J and Wu P H 2019 Phys. Rev. Appl. 11 054016
[46] Liu X B, Wang Q, Zhang X Q, Li H, Xu Q, Xu Y H, Chen X Y, Li S X, Liu M, Tian Z, Zhang C H, Zou C W, Han J G and Zhang W L 2019 Adv. Opt. Mater. 7 1900175
[47] Li X, Tang S, Ding F, Zhong S, Yang Y, Jiang T and Zhou J 2019 Sci. Rep. 9 5454
[48] Hou Y Z, Zhang C and Wang C R 2020 IEEE Access 8 140303
[49] Fan J P and Cheng Y Z 2020 J. Phys. D: Appl. Phys. 53 025109
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[15] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
No Suggested Reading articles found!