Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 064204    DOI: 10.1088/1674-1056/ad2507
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system

Li-Teng Chen(陈立滕)1, Li-Guo Qin(秦立国)1,†, Li-Jun Tian(田立君)2, Jie-Hui Huang(黄接辉)1,‡, Nan-Run Zhou(周南润)3, and Shang-Qing Gong(龚尚庆)4
1 School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China;
2 Department of Physics, Shanghai University, Shanghai 200444, China;
3 School of Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
4 School of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  We theoretically study the transmission spectrum of the cavity field in a double-cavity optomechanical system with cross-Kerr (CK) effect. The system consists of two tunneling coupling optomechanical cavities with a mechanical resonator as a coupling interface. By doping CK medium into the mechanical resonator, CK couplings between the cavity fields and the mechanical resonator are introduced. We investigate the effects of CK coupling strength on the transmission spectrum of the cavity field, including the transmission rate, nonreciprocity and four-wave mixing (FWM). We find that the transmission spectrum of the probe field can show two obvious transparent windows, which can be widened by increasing the CK coupling strength. For the transmission between the two cavity fields, the perfect nonreciprocity and reciprocity are present and modulated by CK coupling and phase difference between two effective optomechanical couplings. In addition, the effects of the optomechanical and CK couplings on FWM show that the single peak of FWM is split into three symmetrical peaks due to the introduction of the CK effect.
Keywords:  cross-Kerr      transmission rate      nonreciprocity      four-wave mixing  
Received:  14 December 2023      Revised:  22 January 2024      Accepted manuscript online:  02 February 2024
PACS:  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  43.58.Wc (Electrical and mechanical oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605225, 61772295, 12174247, and 11664018) and the Natural Science Foundation of Shanghai (Grant No. 16ZR1448400).
Corresponding Authors:  Li-Guo Qin, Jie-Hui Huang     E-mail:  lgqin@foxmail.com;huangjh@sues.edu.cn

Cite this article: 

Li-Teng Chen(陈立滕), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Jie-Hui Huang(黄接辉), Nan-Run Zhou(周南润), and Shang-Qing Gong(龚尚庆) Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system 2024 Chin. Phys. B 33 064204

[1] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Wu M, Zeuthen E, Balram K C and Srinivasan K 2020 Phys. Rev. Applied 12 014027
[3] Jiang W, Sarabalis C J, Dahmani Y D, Patel R N, Mayor F M, McKenna T P, Laer R V and Safavi-Naeini A H 2020 Nat. Commun. 11 1166
[4] Fiore V, Dong C, Kuzyk M C and Wang H 2013 Phys. Rev. A 87 023812
[5] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H 2011 Phys. Rev. Lett. 107 133601
[6] Wu X Y, Qin L G, Xing F F, Tian L J, Huang J H and Gong S Q 2023 J. Appl. Phys. 113 204401
[7] Xing F F, Qin L G, Tian L J, Wu X Y and Huang J H 2023 Opt. Express 31 7120
[8] Qin L G, Wang Z Y, Ma H Y and Gong S Q 2017 Photon. Res. 5 481
[9] Qin L G, Wang Z Y, Huang J H, Tian L J and Gong S Q 2021 Chin. Phys. B 30 068502
[10] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803(R)
[11] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[12] Xiong H, Si L G, Zheng A S, Yang X and Wu Y 2012 Phys. Rev. A 86 013815
[13] Xiong H and Wu Y 2018 Appl. Phys. Rev. 5 031305
[14] Ullah M, Saif F and Wang L G 2020 Quantum Technol. 3 2000061
[15] Zhou Y, Qin L, Huang J, Wang L, Tian L, Wang Z and Gong S 2022 J. Appl. Phys. 131 194410
[16] Xiong W, Jin D Y, Qiu Y, Lam C H and You J Q 2016 Phys. Rev. A 93 023844
[17] Liao J Q, Huang J F, Tian L, Kuang L M and Sun C P 2020 Phys. Rev. A 101 063802
[18] Ling Y, Qvarfort S and Mintert F 2023 Phys. Rev. Research 5 023148
[19] Zanotto S, Conte G, Bellieres L C, Griol A, Navarro-Urrios D, Tredicucci A, Martínez A and Pitanti A 2022 Phys. Rev. Applied 17 044033
[20] Hao X Z, Zhang X Y, Zhou Y H, Dai C M, Hou S C and Yi X X 2022 Phys. Rev. A 105 013505
[21] Borkje K, Massel F and Harris J G E 2021 Phys. Rev. A 104 063507
[22] Heikkila T T, Massel F, Tuorila J, Khan R and Sillanpaa M A 2014 Phys. Rev. Lett. 112 203603
[23] Jiang C, Cui Y and Liu H 2013 Europhys. Lett. 104 34004
[24] You X and Li Y 2019 Phys. Rev. A 100 053842
[25] Li Z, Ren Z, Li Y, Liu Y C and Peng K 2019 Phys. Rev. Applied 11 064048
[26] Lake D P, Mitchell M, Sanders B C and Barclay P E 2020 Nat. Commun. 11 2208
[27] Shao W, Li J and Wang L L 2023 Phys. Rev. A 107 063505
[28] Tian L and Wang H 2010 Phys. Rev. A 82 053806
[29] Hill J T, Safavi-Naeini A H, Chan J and Painter O 2012 Nat. Commun. 3 1196
[30] Cai Y, Feng J, Wang H, Ferrini G, Xu X, Jing J and Treps N 2015 Phys. Rev. A 91 013843
[31] Hafezi M and Rabl P 2012 Opt. Express 20 7672
[32] Zhao L H, Li X L, Lu H L and Tian X D 2019 Commun. Theor. Phys. 71 1011
[33] Li B, Huang R, Xu X W, Miranowicz A and Jing H 2019 Photon. Res. 7 630
[34] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C and Dong C H 2016 Nat. Photon. 10 657
[35] Hu X X, Wang Z B, Zhang P, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T, Tang H X, Dong C H et al. 2021 Nat. Commun. 12 2389
[36] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[37] Malz D, Toth L, Bernier N, Feofanov A, Kippenberg T and Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601
[38] Wang J 2020 Chin. Phys. B 29 034210
[39] Yan X B, Lu H L, Gao F and Yang L 2019 Front. Phys. 14 52601
[40] Wu Q, Zhang J Q, Wu J H, Feng M and Zhang Z M 2015 Opt. Express 23 18534
[41] Kong C, Wang B, Liu Z X, Xiong H and Wu Y 2019 Opt. Express 27 5544
[42] Xiao Y F, Jiang X F, Yang Q F, Wang L and Shi K 2013 Laser Photonics Rev. 7 L51
[43] Wang X F and Chen B 2019 J. Opt. Soc. Am. B 36 162
[1] Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings
Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔). Chin. Phys. B, 2024, 33(6): 064205.
[2] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[3] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[4] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[5] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[6] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[9] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[10] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[11] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[12] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[13] Nonreciprocal transmission of electromagnetic waves by three-layer magneto-optical mediums
Guan-Xia Yu(余观夏), Jing-Jing Fu(付晶晶), Wen-Wen Du(杜文文), Yi-Hang Lv(吕一航), Min Luo(骆敏). Chin. Phys. B, 2019, 28(2): 024101.
[14] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[15] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
No Suggested Reading articles found!