Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024205    DOI: 10.1088/1674-1056/28/2/024205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system

Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬)
Laser Engineering Research Institute, Beijing University of Technology, Beijing 100124, China
Abstract  Pulse-burst 1064-nm picosecond azimuthal polarization beam amplification up to an average power of 16.32 W using side-pumped Nd: YAG amplifiers has been demonstrated. The maximum envelop energy as much as 16.32 mJ, corresponding to a power amplification factor of 299.5%. A simple criterion was defined to help estimate the amount of depolarization in Nd:YAG amplifier stages. The degree of depolarization of the beam was 7.1% and the beam quality was measured to be M2 = 3.69. The reason for the azimuthal polarization depolarization and beam quality degradation were explained theoretically and experimentally during the amplification process.
Keywords:  azimuthal polarization      thermally induced birefringence      Nd:YAG amplifiers      picosecond laser  
Received:  13 November 2018      Revised:  04 December 2018      Accepted manuscript online: 
PACS:  42.25.Lc (Birefringence)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  29.25.Lg (Ion sources: polarized)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U1631240), the Education Commission Program of Beijing, and Beijing Natural Science Foundation (Grant No. KZ201510005001).
Corresponding Authors:  Meng Chen     E-mail:  chenmeng@bjut.edu.cn

Cite this article: 

Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬) Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system 2019 Chin. Phys. B 28 024205

[1] Meier M, Romano V and Feurer T 2007 Appl. Phys. A 86 329
[2] Weber R, Michalowski A, et al. 2011 Phys. Proc. 12 21
[3] Chang C, Chen X and Pu J 2017 Opt. Rev. 24 188
[4] Martynas B, Mindaugas G, Peter G K and G 2011 Appl. Phys. Lett. 98 201101
[5] Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2008 Appl. Opt. 46 3304
[6] Moshe I and Jackel S 2005 J. Opt. Soc. Am. B 22 1228
[7] Bourderionnet J, Brignon A, Huignard J P and Frey R 2002 Opt. Commun. 204 299
[8] Beresna M, Gecevicius M, Kazansky P and Gertus T 2011 Appl. Phys. Lett. 98 233901
[9] Machavariani G, Lumer Y, Moshe I, Meir A and Jackel S 2008 Opt. Commun. 281 732
[10] Lin D, Daniel J M O, Gecevičius M, Beresna M, Kazansky P G and Clarkson W A 2014 Opt. Lett. 39 5359
[11] Kampfe T, Tonchev S, Tishchenko A V, Gergov D and Parriaux O 2012 Opt. Express 20 5392
[12] Xia K G, Ueda K I and Li J L 2012 Appl. Phys. B 107 47
[13] Long M L, Chen M and Li G 2017 Chin. Opt. Lett. 15 49
[14] Meir A, Machavariani G, Moshe I, Jackel S and Lumer Y 2008 Appl. Opt. 47 3886
[15] Koechner W andRice D 1970 IEEE J. Quantum Electron. 6 557-566
[16] Loescher A, Negel J P, Graf T and Ahmed M A 2012 Opt. Lett. 40 5758
[1] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
No Suggested Reading articles found!