Abstract We performed ultrasonic measurements on a quaternary cubic compound PrRuInZn to explore the ground state properties derived from non-Kramers doublet of Pr. PrRuInZn is a quaternary derivative of the ternary compound PrRuZn that exhibits a structural phase transition at K. In PrRuInZn, the Zn atoms at the 16 site in PrRuZn are selectively replaced by In atoms. A monotonic increase was observed in the temperature dependence of elastic constants and in the temperature range around to which an elastic softening was observed in for PrRuZn. The disappearance of the softening indicates that the structural transition in PrRuZn is suppressed by the substitution of Zn ions by In ones with a larger ionic radius. Alternatively, the of PrRuInZn exhibits a precursor Curie-type elastic softening toward low temperatures being responsible for the non-Kramers ground state. We discuss the ground state and the evolution of the elastic properties of the different single-crystal samples of PrRuInZn grown under different conditions.
Fund: Project supported by the Soft-Path Science and Engineering Research Center (SPERC), Iwate University, and the JSPS KAKENHI (Grant Nos. JP18K03530, JP21K04622, and JP21K13869).
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements 2024 Chin. Phys. B 33 064301
[1] Onimaru T, Matsumoto K T, Inoue Y F, Umeo K, Sakakibara T, Karaki Y, Kubota M and Takabatake T 2011 Phys. Rev. Lett. 106 177001 [2] Onimaru T, Izawa K, Matsumoto K T, Yoshida T, Machida Y, Ikeura T, Wakiya K, Umeo K, Kittaka S, Araki K, Sakakibara T and Takabatake T 2016 Phys. Rev. B 94 075134 [3] Tsuruta A and Miyake K 2015 J. Phys. Soc. Jpn. 84 114714 [4] Yamane Y, Onimaru T, Wakiya K, Matsumoto K T, Umeo K and Takabatake T 2018 Phys. Rev. Lett. 121 077206 [5] Sakai A and Nakatiji S 2011 J. Phys. Soc. Jpn. 80 063701 [6] Tsujimoto M, Matsumoto Y, Tomita T, Sakai A and Nakatsuji S 2014 Phys. Rev. Lett. 113 267001 [7] Sato T J, Ibuka S, Nambu Y, Yamazaki T, Hong T, Sakai A and Nakatsuji S 2012 Phys. Rev. B 86 184419 [8] Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y and Uwatoko Y 2012 Phys. Rev. Lett. 109 187004 [9] Higashinaka R, Nakama A, Miyazaki R, Yamaura J, Sato H and Aoki Y 2017 J. Phys. Soc. Jpn. 86 103703 [10] Nasch T, Jeitschko W and Rodewald U C 1997 Z. Naturforsch. B 52 1023 [11] Iwasa K, Kobayashi H, Onimaru T, Matsumoto K T, Nagasawa N, Takabatake T, Ohira-Kawamura S, Kikuchi T, Inamura Y and Nakajima K 2013 J. Phys. Soc. Jpn. 82 043707 [12] Koseki M, Nakanishi Y, Deto K, Koseki G, Kashiwazaki R, Shichinomiya F, Nakamura M, Yoshizawa M, Sakai A and Nakatsuji S 2011 J. Phys. Soc. Jpn. 80 SA049 [13] Ishii I, Muneshige H, Suetomi Y, Fujita K T, Onimaru T, Matsumoto T K, Takabatake T, Araki K, Akatsu M, Nemoto Y, Goto T and Suzuki T 2011 J. Phys. Soc. Jpn. 80 093601 [14] Yanagisawa T, Hidaka H, Amitsuka H, Zherlitsyn S, Wosnitza J, Yamane Y and Onimaru T 2019 Phys. Rev. Lett. 123 067201 [15] Ishii I, Suetomi Y, Fujita T K, Onimaru T, Matsumoto K T, Inoue Y F, Takabatake T and Suzuki T 2011 J. Phys. Conf. Ser. 273 012136 [16] Onimaru T, Matsumoto K T, Inoue Y F, Umeo K, Saiga Y, Matsushita Y, Tamura R, Nishimoto K, Ishii I, Suzuki T and Takabatake T 2010 J. Phys. Soc. Jpn. 79 033704 [17] Onimaru T, Matsumoto K T, Nagasawa N, Inoue Y F, Umeo K, Tamura R, Nishimoto K, Kittaka S, Sakakibara T and Takabatake T 2012 J. Phys.: Condens. Matter 24 294207 [18] Ishii I (private communications) [19] Wakiya K, Onimaru T, Matsumoto K T, Yamane Y, Nagasawa N, Umeo K, Kittaka S, Sakakibara T, Matsushita Y and Takabatake T 2017 J. Phys. Soc. Jpn. 86 034707 [20] Hasegawa T, Ogita N and Udagawa M 2012 J. Phys.: Conf. Ser. 391 012016 [21] Wakiya K, Onimaru T, Tsutsui S, Matsumoto K T, Nagasawa N, Baron A Q R, Hasegawa T, Ogita N, Udagawa M and Takabatake T 2015 J. Phys.: Conf. Ser. 592 012024 [22] Wakiya K, Onimaru T, Tsutsui S, Hasegawa T, Matsumoto K T, Nagasawa N, Baron A Q R, Ogita N, Udagawa M and Takabatake T 2016 Phys. Rev. B 93 064105 [23] Isikawa Y, Mizushima T, Ejiri J, Kitayama S, Kumagai K, Kuwai T, Bordet P and Lejay P 2015 J. Phys. Soc. Jpn. 84 074707 [24] Wakiya K, Sugiyama Y, Kishimoto M, Matsuda Tatsuma D, Aoki Y, Uehara M, Gouchi J, Uwatoko Y and Umehara I 2018 J. Phys. Soc. Jpn. 87 094706 [25] Wakiya K, Sugiyama Y, Uehara M, Sato H, Gouchi J, Uwatoko Y and Umehara I 2019 J. Alloys Compd. 797 309 [26] Komagata T, Wakiya K, Sugiyama Y, Uehara M, Umehara I, Nakamura N, Matsuda T D, Aoki Y, Gouchi J and Uwatoko Y 2020 JPS Conf. Proc. 30 011157 [27] LüthiB 1985 J. Magn. Magn. Mater. 52 70 [28] Mullen M E, Lüthi B, Wang P S, Bucher E, Longinotti L D, Maita J P and Ott H R 1974 Phys. Rev. B 10 186 [29] Nakamura S, Goto T, Ishikawa Y, Sakatsume S and Kasuya M 1994 J. Phys. Soc. Jpn. 60 2305 [30] Nakanishi Y, Simizu T, Yoshizawa M, Matsuda T, Sugawara H and Sato H 2001 Phys. Rev. B 63 184429 [31] Nakanishi Y, Fujino T, Ito K, Nakamura M, Yoshizawa M, Saiga Y, Kosaka M and Uwatoko Y 2009 Phys. Rev. B 80 184418
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.