Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078707    DOI: 10.1088/1674-1056/ab9294
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Terahertz polarization conversion and sensing with double-layer chiral metasurface

Zi-Yang Zhang(张子扬)1, Fei Fan(范飞)1, Teng-Fei Li(李腾飞)1, Yun-Yun Ji(冀允允)1, Sheng-Jiang Chang(常胜江)2
1 Institute of Modern Optics, Nankai University, Tianjin 300350, China;
2 Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
Abstract  The terahertz (THz) resonance, chirality, and polarization conversion properties of a double-layer chiral metasurface have been experimentally investigated by THz time domain spectroscopy system and polarization detection method. The special symmetric geometry of each unit cell with its adjacent cells makes a strong chiral electromagnetic response in this metasurface, which leads to a strong polarization conversion effect. Moreover, compared with the traditional THz transmission resonance sensing for film thickness, the polarization sensing characterized by polarization elliptical angle (PEA) and polarization rotation angle (PRA) shows a better Q factor and figure of merit (FoM). The results show that the Q factors of the PEA and PRA reach 43.8 and 49.1 when the interval film is 20 μm, while the Q factor of THz resonance sensing is only 10.6. And these PEA and PRA can play a complementary role to obtain a double-parameter sensing method with a higher FoM, over 4 times than that of resonance sensing. This chiral metasurface and its polarization sensing method provide new ideas for the development of high-efficiency THz polarization manipulation, and open a window to the high sensitive sensing by using THz polarization spectroscopy.
Keywords:  terahertz      chiral metasurface      polarization conversion      sensing  
Received:  21 March 2020      Revised:  05 May 2020      Accepted manuscript online: 
PACS:  87.50.U-  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Ja (Polarization)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701000), the National Natural Science Foundation of China (Grant Nos. 61971242, 61831012, and 61671491), the Natural Science Foundation of Tianjin City, China (Grant No. 19JCYBJC16600), and the Young Elite Scientists Sponsorship Program by Tianjin, China (Grant No. TJSQNTJ-2017-12).
Corresponding Authors:  Fei Fan, Sheng-Jiang Chang     E-mail:  fanfei@nankai.edu.cn;sjchang@nankai.edu.cn

Cite this article: 

Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江) Terahertz polarization conversion and sensing with double-layer chiral metasurface 2020 Chin. Phys. B 29 078707

[1] Jansen C, Wietzke S, Peters O, Scheller M, Vieweg N, Salhi M, Krumbholz N, Jördens C, Hochrein T and Koch M 2010 Appl. Opt. 49 E48
[2] Tu X C, Kang L L Xin H, Mao Q K, Wan C, Chen J, Jin B B, Ji Z M, Xu W W and Wu P H 2013 Chin. Phys. B 22 040701
[3] Kleine-Ostmann T and Nagatsuma T 2011 J. Infrared Millimeter Terahertz Waves 32 143
[4] Daryoosh Saeedkia 2013 Handbook of terahertz technology for imaging, sensing and communications, Vol. 1 (Woodhead Publishing) pp. 2, 3
[5] Kaveev A K, Kropotov G I, Tsygankova E V, Tzibizov I A, Ganichev S D, Danilov S N, Olbrich P, Zoth C, Kaveeva E G, Zhdanov A I, Ivanov A A, Deyanov R Z and Redlich B 2013 Appl. Opt. 52 B60
[6] Prinz V Y, Naumova E V, Golod S V, Seleznev V A, Bocharov A A and Kubarev V V 2017 Sci. Rep. 7 43334
[7] Rahm M, Li J S and Padilla W J 2013 J. Infrared Millimeter Terahertz Waves 34 1
[8] Mo W C, Wei X L, Wang K J, Li Y and Liu J S 2016 Opt. Express 24 13621
[9] Monticone F and Alu A 2014 Chin. Phys. B 23 047809
[10] Chen H Y, Wang J F, Ma H, Qu S B, Zhang J Q, Xu Z and Zhang A X 2015 Chin. Phys. B 24 014201
[11] Smith D R, Pendry J B and Wiltshire M C K 2004 Science 305 788
[12] Valev V K, Baumberg J J, Sibilia C and Thierry V 2013 Adv. Mater. 25 2517
[13] Singh R, Plum E, Menzel C, Rockstuhl C, Azad A K, Cheville R A, Lederer F, Zhang W and Zheludev N I 2009 Phys. Rev. B 80 153104
[14] Collins J T, Kuppe C, Hooper D C, Sibilia C, Centini M and Valev V K 2017 Adv. Opt. Mater. 5 1700182
[15] Wegener M and Linden S 2009 Physics 2 3
[16] Rodger A and Nordén B 1997 Circular dichroism and linear dichroism, Vol. 1 (Oxford: Oxford University Press) p. 2
[17] Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X and Tian J G 2015 Opt. Lett. 40 3185
[18] Cheng Z and Cheng Y 2019 Opt. Commun. 435 178
[19] Decker M, Zhao R, Soukoulis C M, Linden S and Wegener M 2010 Opt. Lett. 35 1593
[20] O'Hara J F, Withayachumnankul W and Al-Naib I 2012 J. Infrared Millimeter Terahertz Waves 33 245
[21] Beruete Mand Jáuregui-López I 2019 Adv. Opt. Mater. 1900721
[22] Cong L Q, Tan S Y, Yahiaoui R, Yan F P, Zhang W L and Singh R J 2015 Appl. Phys. Lett. 106 031107
[23] O'Hara J F, Singh R, Brener I, Smirnova E, Han J G, Taylor A J and Zhang W L 2008 Opt. Express 16 1786
[24] Chen M, Fan F, Shen S, Wang X H and Chang S J 2016 Appl. Opt. 55 6471
[25] Neu J, Aschaffenburg D J, Williams M R C and Schmuttenmaer C A 2017 IEEE Trans. Terahertz Sci. Technol. 7 755
[26] Aydin K and Ozbay E 2007 J. Appl. Phys. 101 024911
[27] Berry M V 1984 Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 392 45
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[9] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[10] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[11] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[12] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
No Suggested Reading articles found!