INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application |
Dou-Dou Wang(王豆豆)1, Chang-Long Mu(穆长龙)1, De-Peng Kong(孔德鹏)2, Chen-Yu Guo(郭晨瑜)1 |
1 College of Sciences, Xi'an University of Science and Technology, Xi'an 710054, China; 2 The State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China |
|
|
Abstract A type of photonic crystal fiber based on Kagome lattice cladding and slot air holes in a rectangular core is investigated. Full vector finite element method is used to evaluate the modal and propagation properties of the designed fiber. High birefringence of 0.089 and low effective material loss of 0.055 cm-1 are obtained at 1 THz. The y-polarized fundamental mode of the designed fiber shows a flattened and near-zero dispersion of 0±0.45 ps·THz-1·cm-1 within a broad frequency range (0.5 THz-1.5 THz). Our results provide the theory basis for applications of the designed fiber in terahertz polarization maintaining systems.
|
Received: 26 June 2019
Revised: 14 August 2019
Accepted manuscript online:
|
PACS:
|
87.50.U-
|
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
42.81.Gs
|
(Birefringence, polarization)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604260) and the Outstanding Youth Science Fund of Xi'an University of Science and Technology, China (Grant No. 2019YQ3-10). |
Corresponding Authors:
Dou-Dou Wang
E-mail: wangdoudou@xust.edu.cn
|
Cite this article:
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜) High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application 2019 Chin. Phys. B 28 118701
|
[33] |
Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J, Luo Y and Peng G 2015 Opt. Lett. 40 3966
|
[1] |
Yu Y Y, Li X Y, He K P and Sun B 2016 Chin. Phys. B 25 028703
|
[34] |
Kong D P and Wang L L 2009 Opt. Lett. 34 2435
|
[2] |
Wang Y, Ren Y, Chen L, Song C, Li C, Zhang C, Xu D and Yao J 2018 Chin. Phys. B 27 114204
|
[35] |
Chen Q, Kong D P, Miao J, He X Y, Zhang J and Wang L L 2017 Acta Phot. Sin. 46 0406001(in Chinese)
|
[3] |
Withayachumnankul W, Fischer B M, Lin H and Abbott D 2008 J. Opt. Soc. Am. B 25 1059
|
[4] |
Strachan C J, Taday P F, Newnham D A, Gordon K C, Zeitler J A, Pepper M and Rades T 2005 J. Pharm. Sci. 94 837
|
[5] |
Wang M, Wang J F, Wu Q Y and Huang Y X 2014 Acta Phys. Sin. 63 154101 (in Chinese)
|
[6] |
Wang K and Mittleman D M 2004 Nature 432 376
|
[7] |
Bowden B, Harrington J A and Mitrofanov O 2007 Opt. Lett. 32 2945
|
[8] |
Skorobogatiy M and Dupuis A 2007 Appl. Phys. Lett. 90 113514
|
[9] |
Mendis R and Grischkowsky D 2000 J. Appl. Phys. 88 4449
|
[10] |
Wang J L, Yao J Q, Chen H M, Bing P B, Li Z Y and Zhong K 2011 Acta Phys. Sin. 60 104219 (in Chinese)
|
[11] |
Cho M, Kim J, Park H, Han Y, Moon K, Jung E and Han H 2008 Opt. Express 16 7
|
[12] |
Atakaramians S, Shahraam A V, Fischer B M, Abbott D and Monro T M 2009 Opt. Commun. 282 36
|
[13] |
Chen N, Liang J and Ren L 2013 Appl. Opt. 52 5297
|
[14] |
Hasan M R, Anower M S, Islam M A and Razzak S M A 2016 Appl. Opt. 55 4145
|
[15] |
Wu Z, Shi Z, Xia H, Zhou X, Deng Q, Huang J, Jiang X and Wu W 2016 IEEE Photon. J. 8 4502711
|
[16] |
Habib M A, Anower M S and Hasan M R 2018 Opt. Commun. 423 140
|
[17] |
Islam M S, Sultana J, Dinovitser A, Ng W H and Abbott D 2018 Opt. Commun. 413 242
|
[18] |
Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O and Jepsen P U 2009 Opt. Express 17 8592
|
[19] |
Khanarian G 2001 Opt. Eng. 40 1024
|
[20] |
Ung B, Mazhorova A, Dupuis A, Rozé M and Skorobogatiy M 2011 Opt. Express 19 B848
|
[21] |
Liang J, Ren L, Chen N and Zhou C 2013 Opt. Commun. 295 257
|
[22] |
Argyros A and Pla J 2007 Opt. Express 15 7713
|
[23] |
Couny F, Benabid F and Light P S 2006 Opt. Lett. 31 3574
|
[24] |
Wang Y Y, Wheeler N V, Couny F, Roberts P J and Benabid F 2011 Opt. Lett. 36 669
|
[25] |
Anthony J, Leonhardt R, Leonsaval S and Argyros A 2011 Opt. Express 19 18470
|
[26] |
Luo J, Chen S, Qu H, Su Z, Li L and Tian F 2018 J. Lightwave Technol. 36 3242
|
[27] |
Kawsar A, Sawrab C, Kumar P B, Md S I, Shuvo S, Md I I and Sayed A 2017 Appl. Opt. 56 3477
|
[28] |
Large M C J, Ponrathnam S, Argyros A, Bassett I M, Punjari N S, Cox F, Lwin R, Barton G W and Van E M A 2006 Mol. Cryst. Liq. Cryst. 446 219
|
[29] |
Van P L D, Gorecki J, Numkam F E, Apostolopoulos V and Poletti F 2018 Appl. Opt. 57 3953
|
[30] |
Li J, Nallappan K, Guerboukha H and Skorobogatiy M 2017 Opt. Express 25 4126
|
[31] |
Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L and Liu W 2016 Opt. Express 24 22454
|
[32] |
Atakaramians S, Afshar V S, Ebendorff-Heidepriem H, Nagel M, Fischer B M, Abbott D and Monro T M 2009 Opt. Express 17 14053
|
[33] |
Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J, Luo Y and Peng G 2015 Opt. Lett. 40 3966
|
[34] |
Kong D P and Wang L L 2009 Opt. Lett. 34 2435
|
[35] |
Chen Q, Kong D P, Miao J, He X Y, Zhang J and Wang L L 2017 Acta Phot. Sin. 46 0406001(in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|