Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118701    DOI: 10.1088/1674-1056/ab44af
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application

Dou-Dou Wang(王豆豆)1, Chang-Long Mu(穆长龙)1, De-Peng Kong(孔德鹏)2, Chen-Yu Guo(郭晨瑜)1
1 College of Sciences, Xi'an University of Science and Technology, Xi'an 710054, China;
2 The State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
Abstract  A type of photonic crystal fiber based on Kagome lattice cladding and slot air holes in a rectangular core is investigated. Full vector finite element method is used to evaluate the modal and propagation properties of the designed fiber. High birefringence of 0.089 and low effective material loss of 0.055 cm-1 are obtained at 1 THz. The y-polarized fundamental mode of the designed fiber shows a flattened and near-zero dispersion of 0±0.45 ps·THz-1·cm-1 within a broad frequency range (0.5 THz-1.5 THz). Our results provide the theory basis for applications of the designed fiber in terahertz polarization maintaining systems.
Keywords:  terahertz      photonic crystal fiber      birefringence      loss      dispersion  
Received:  26 June 2019      Revised:  14 August 2019      Accepted manuscript online: 
PACS:  87.50.U-  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11604260) and the Outstanding Youth Science Fund of Xi'an University of Science and Technology, China (Grant No. 2019YQ3-10).
Corresponding Authors:  Dou-Dou Wang     E-mail:  wangdoudou@xust.edu.cn

Cite this article: 

Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜) High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application 2019 Chin. Phys. B 28 118701

[33] Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J, Luo Y and Peng G 2015 Opt. Lett. 40 3966
[1] Yu Y Y, Li X Y, He K P and Sun B 2016 Chin. Phys. B 25 028703
[34] Kong D P and Wang L L 2009 Opt. Lett. 34 2435
[2] Wang Y, Ren Y, Chen L, Song C, Li C, Zhang C, Xu D and Yao J 2018 Chin. Phys. B 27 114204
[35] Chen Q, Kong D P, Miao J, He X Y, Zhang J and Wang L L 2017 Acta Phot. Sin. 46 0406001(in Chinese)
[3] Withayachumnankul W, Fischer B M, Lin H and Abbott D 2008 J. Opt. Soc. Am. B 25 1059
[4] Strachan C J, Taday P F, Newnham D A, Gordon K C, Zeitler J A, Pepper M and Rades T 2005 J. Pharm. Sci. 94 837
[5] Wang M, Wang J F, Wu Q Y and Huang Y X 2014 Acta Phys. Sin. 63 154101 (in Chinese)
[6] Wang K and Mittleman D M 2004 Nature 432 376
[7] Bowden B, Harrington J A and Mitrofanov O 2007 Opt. Lett. 32 2945
[8] Skorobogatiy M and Dupuis A 2007 Appl. Phys. Lett. 90 113514
[9] Mendis R and Grischkowsky D 2000 J. Appl. Phys. 88 4449
[10] Wang J L, Yao J Q, Chen H M, Bing P B, Li Z Y and Zhong K 2011 Acta Phys. Sin. 60 104219 (in Chinese)
[11] Cho M, Kim J, Park H, Han Y, Moon K, Jung E and Han H 2008 Opt. Express 16 7
[12] Atakaramians S, Shahraam A V, Fischer B M, Abbott D and Monro T M 2009 Opt. Commun. 282 36
[13] Chen N, Liang J and Ren L 2013 Appl. Opt. 52 5297
[14] Hasan M R, Anower M S, Islam M A and Razzak S M A 2016 Appl. Opt. 55 4145
[15] Wu Z, Shi Z, Xia H, Zhou X, Deng Q, Huang J, Jiang X and Wu W 2016 IEEE Photon. J. 8 4502711
[16] Habib M A, Anower M S and Hasan M R 2018 Opt. Commun. 423 140
[17] Islam M S, Sultana J, Dinovitser A, Ng W H and Abbott D 2018 Opt. Commun. 413 242
[18] Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O and Jepsen P U 2009 Opt. Express 17 8592
[19] Khanarian G 2001 Opt. Eng. 40 1024
[20] Ung B, Mazhorova A, Dupuis A, Rozé M and Skorobogatiy M 2011 Opt. Express 19 B848
[21] Liang J, Ren L, Chen N and Zhou C 2013 Opt. Commun. 295 257
[22] Argyros A and Pla J 2007 Opt. Express 15 7713
[23] Couny F, Benabid F and Light P S 2006 Opt. Lett. 31 3574
[24] Wang Y Y, Wheeler N V, Couny F, Roberts P J and Benabid F 2011 Opt. Lett. 36 669
[25] Anthony J, Leonhardt R, Leonsaval S and Argyros A 2011 Opt. Express 19 18470
[26] Luo J, Chen S, Qu H, Su Z, Li L and Tian F 2018 J. Lightwave Technol. 36 3242
[27] Kawsar A, Sawrab C, Kumar P B, Md S I, Shuvo S, Md I I and Sayed A 2017 Appl. Opt. 56 3477
[28] Large M C J, Ponrathnam S, Argyros A, Bassett I M, Punjari N S, Cox F, Lwin R, Barton G W and Van E M A 2006 Mol. Cryst. Liq. Cryst. 446 219
[29] Van P L D, Gorecki J, Numkam F E, Apostolopoulos V and Poletti F 2018 Appl. Opt. 57 3953
[30] Li J, Nallappan K, Guerboukha H and Skorobogatiy M 2017 Opt. Express 25 4126
[31] Yang J, Zhao J, Gong C, Tian H, Sun L, Chen P, Lin L and Liu W 2016 Opt. Express 24 22454
[32] Atakaramians S, Afshar V S, Ebendorff-Heidepriem H, Nagel M, Fischer B M, Abbott D and Monro T M 2009 Opt. Express 17 14053
[33] Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J, Luo Y and Peng G 2015 Opt. Lett. 40 3966
[34] Kong D P and Wang L L 2009 Opt. Lett. 34 2435
[35] Chen Q, Kong D P, Miao J, He X Y, Zhang J and Wang L L 2017 Acta Phot. Sin. 46 0406001(in Chinese)
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[4] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[8] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[9] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[10] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[11] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[12] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[13] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[14] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[15] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
No Suggested Reading articles found!