Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078706    DOI: 10.1088/1674-1056/ab9295
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Polarization conversion metasurface in terahertz region

Chen Zhou(周晨)1, Jiu-Sheng Li(李九生)1,2
1 Centre for THz Research, China Jiliang University, Hangzhou 310018, China;
2 China Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Abstract  Polarization conversion is a very important electromagnetic wave manipulation method. In this paper, we investigate a high-efficiency linear-to-circular polarization and cross-polarization converter by utilizing coding metasurface. The coding particle consists of top layer metal pattern and bottom metal plate sandwiched with square F4B dielectric, which can manipulate the linear-to-circular polarization and cross-polarization converter of the reflected wave simultaneously. In the terahertz frequency range of 1.0 THz-2.0 THz, the reflection magnitudes reach approximately 90% and the axial ratio is less than 3 dB. The proposed polarization converter may lead to advances in a variety of applications such as security, microscopy, information processing, stealth technology, and data storage.
Keywords:  terahertz wave      polarization conversion      metasurface  
Received:  29 March 2020      Revised:  24 April 2020      Accepted manuscript online: 
PACS:  87.50.-a (Effects of electromagnetic and acoustic fields on biological systems)  
  87.50.up (Dosimetry/exposure assessment)  
  87.10.Vg (Biological information)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0200306) and the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012).
Corresponding Authors:  Jiu-Sheng Li     E-mail:  jshli@126.com

Cite this article: 

Chen Zhou(周晨), Jiu-Sheng Li(李九生) Polarization conversion metasurface in terahertz region 2020 Chin. Phys. B 29 078706

[1] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[2] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[3] Smith D R, Padilla W J, Vier D, Nemat-Nasser S and Schultz S 2000 Phys. Rev. 84 4184
[4] Sui S, Ma H, Wang J F, Pang Y Q, Feng M D, Xu Z and Qu S B 2017 J. Phys. D: Appl. Phys. 51 065603
[5] Li Y F, Zhang J M, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 Appl. Phys. Lett. 104 221110
[6] Wen D D, Yue F Y, Li G X, Zheng G X, Chan K L, Chen S M, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S and Chen X Z 2015 Nat. Commun. 6 8241
[7] Sun G, Chen H, Cheng S and Zhao X 2017 Physica B 525 127
[8] Xu H, Tang S, Ling X, Luo W and Zhou L 2017 Ann. Physik 529 1700045
[9] Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Xia S, Xu Z and Qu S B 2016 Appl. Phys. Lett. 109 014104
[10] Sun H Y, Gu C Q, Chen X L, Li Z, Liu L L and Martin F 2017 J. Appl. Phys. 121 174902
[11] Gao X, Han X, Cao W P, Li H O, Ma H F and Cui T J 2015 IEEE Trans. Antenn Propag. 63 3522
[12] Liu C B, Bai Y, Zhao Q, Yang Y H, Chen H S, Zhou J and Qiao L J 2016 Sci. Rep. 6 34819
[13] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, OuYang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L and Chen Q 2016 Light Sci. Appl. 5 e16076
[14] Zhuang Y Q, Wang G M, Cai T and Zhang Q F 2018 Opt. Express 26 3594
[15] Zhu H and Semperlotti F 2016 Phys. Rev. Lett. 117 034302
[16] Jing Y, Li Y F, Zhang J F, Wang J, Feng M C, Ma H and Qu S B 2019 Opt. Express 27 21520
[17] Jing Y, Li Y, Zhang J M, Wang J, Feng M, Sui S, Qiu T, Ma H and Qu S 2018 J. Phys. D: Appl. Phys. 51 475103
[18] Cui T J, Qi M Q, Wan X, Zhao J and Cheng Q 2014 Light Sci. Appl. 3 e218
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[9] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!