Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 056301    DOI: 10.1088/1674-1056/ad2dcc
Special Issue: SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
SPECIAL TOPIC—Heat conduction and its related interdisciplinary areas Prev   Next  

Dynamic response of a thermal transistor to time-varying signals

Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷)†
Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, and Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  Thermal transistor, the thermal analog of an electronic transistor, is one of the most important thermal devices for microscopic-scale heat manipulating. It is a three-terminal device, and the heat current flowing through two terminals can be largely controlled by the temperature of the third one. Dynamic response plays an important role in the application of electric devices and also thermal devices, which represents the devices' ability to treat fast varying inputs. In this paper, we systematically study two typical dynamic responses of a thermal transistor, i.e., the response to a step-function input (a switching process) and the response to a square-wave input. The role of the length L of the control segment is carefully studied. It is revealed that when L is increased, the performance of the thermal transistor worsens badly. Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well, which agrees with our analytical expectation. However, the detailed power exponents deviate from the expected values noticeably. This implies the violation of the conventional assumptions that we adopt.
Keywords:  phonon      phononics      thermal transistor      dynamic response      heat conduction  
Received:  12 January 2024      Revised:  07 February 2024      Accepted manuscript online:  28 February 2024
PACS:  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  63.20.-e (Phonons in crystal lattices)  
  44.10.+i (Heat conduction)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12075316), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 21XNH091) (Q.R.).
Corresponding Authors:  Lei Wang     E-mail:  phywanglei@ruc.edu.cn

Cite this article: 

Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷) Dynamic response of a thermal transistor to time-varying signals 2024 Chin. Phys. B 33 056301

[1] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[2] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[3] Li B, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
[4] Wang L and Li B 2007 Phys. Rev. Lett. 99 177208
[5] Wang L and Li B 2008 Phys. Rev. Lett. 101 267203
[6] Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301
[7] Defaveri L, Almeida A A A and Anteneodo C 2023 Phys. Rev. E 108 044126
[8] Dmitriev S V, Kuzkin V A and Krivtsov A M 2023 Phys. Rev. E 108 054221
[9] Ren J and Zhu J X 2013 Phys. Rev. B 87 241412
[10] Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
[11] Guo B Q, Liu T and Yu C S 2018 Phys. Rev. E 98 022118
[12] Guo B Q, Liu T and Yu C S 2019 Phys. Rev. E 99 032112
[13] Liu H, Wang C, Wang L Q and Ren J 2019 Phys. Rev. E 99 032114
[14] Fornieri A, Timossi G, Bosisio R, Solinas P and Giazotto F 2016 Phys. Rev. B 93 134508
[15] Khomeriki R, Lepri S and Ruffo S 2004 Phys. Rev. E 70 066626
[16] Ng R C, Castro Alvarez A and Sotomayor Torres C M 2022 Energies 15 4685
[17] Castelli L, Zhu Q, Shimokusu T J and Wehmeyer G 2023 Nat. Commun. 14 393
[18] Xie R, Bui C T, Varghese B, Zhang Q, Sow C H, Li B and Thong J T L 2011 Adv. Funct. Mater. 21 1602
[19] Dyakov S A, Dai J, Yan M and Qiu M 2015 J. Phys. D 48 305104
[20] Ito K, Nishikawa K and Iizuka H 2016 Appl. Phys. Lett. 108 053507
[21] Morsy A M, Biswas R and Povinelli M L 2019 APL Photonics 4 010804
[22] Christov C I and Jordan P M 2005 Phys. Rev. Lett. 94 154301
[23] Gendelman O V and Savin A V 2010 Phys. Rev. E 81 020103
[24] Wang L, Liu S and Li B 2019 New J. Phys. 21 083019
[25] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
[26] Jarzynski C and Wójcik D K 2004 Phys. Rev. Lett. 92 230602
[27] Saito K and Dhar A 2007 Phys. Rev. Lett. 99 180601
[28] Ren J, Hänggi P and Li B 2010 Phys. Rev. Lett. 104 170601
[29] Geniet F and Leon J 2002 Phys. Rev. Lett. 89 134102
[30] Li N, Hänggi P and Li B 2008 Europhys. Lett. 84 40009
[31] Ordonez-Miranda J, Anufriev R, Nomura M and Volz S 2022 Phys. Rev. B 106 L100102
[32] Wang S, Zeng C, Zhu G, Wang H and Li B 2023 Phys. Rev. Res. 5 043009
[33] Zhan F, Li N, Kohler S and Hänggi P 2009 Phys. Rev. E 80 061115
[34] Li N, Zhan F, Hänggi P and Li B 2009 Phys. Rev. E 80 011125
[35] Ren J and Li B 2010 Phys. Rev. E 81 021111
[36] Wang L and Wu J 2014 Phys. Rev. E 89 012119
[37] He D, Ai B Q, Chan H K and Hu B 2010 Phys. Rev. E 81 041131
[38] Zhong W R, Zhang M P, Ai B Q and Hu B 2011 Phys. Rev. E 84 031130
[39] Yang Y, Ma D, Zhao Y and Zhang L 2020 J. Appl. Phys. 127 195301
[40] Yang Y, Li X and Zhang L 2021 Chin. Phys. Lett. 38 016601
[41] Braun O M and Kivshar Y S 1998 Phys. Rep. 306 1
[42] Hu B, Li B and Zhao H 1998 Phys. Rev. E 57 2992
[43] Ruan Q and Wang L 2020 Phys. Rev. Res. 2 023087
[44] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[45] Dhar A 2008 Adv. Phys. 57 457
[46] Dhar A, Kundu A and Kundu A 2019 Front. Phys. 7 159
[1] Superconducting state in Ba(1−x)SrxNi2As2 near the quantum critical point
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊), . Chin. Phys. B, 2024, 33(6): 066802.
[2] Near-field radiative heat transfer between nanoporous GaN films
Xiaozheng Han(韩晓政), Jihong Zhang(张纪红), Haotuo Liu(刘皓佗), Xiaohu Wu(吴小虎), and Huiwen Leng(冷惠文). Chin. Phys. B, 2024, 33(4): 047801.
[3] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[4] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[5] Sensing the heavy water concentration in an H2O—D2O mixture by solid—solid phononic crystals
Mohammadreza Rahimi and Ali Bahrami. Chin. Phys. B, 2024, 33(4): 044301.
[6] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[7] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[8] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[9] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[10] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[11] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[12] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[13] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[14] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[15] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
No Suggested Reading articles found!