Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 056401    DOI: 10.1088/1674-1056/ad205e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Low-frequency hybridized excess vibrations of two-dimensional glasses

Licun Fu(付立存), Yiming Zheng(郑一鸣), and Lijin Wang(王利近)†
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
Abstract  One hallmark of glasses is the existence of excess vibrational modes at low frequencies $\omega$ beyond Debye's prediction. Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses. However, there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations. In particular, excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow $D_{\rm exc}(\omega) \sim \omega^{2}$ in 2D glasses with an inverse power law potential. Yet, the universality of the quadratic scaling remains unknown, since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum. Here, we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion. Moreover, we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion, which is accompanied by a suppression of the strength of the sound attenuation. Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties.
Keywords:  density of states      vibrational modes      sound attenuation      two-dimensional glasses  
Received:  18 November 2023      Revised:  04 January 2024      Accepted manuscript online:  19 January 2024
PACS:  64.70.Q- (Theory and modeling of the glass transition)  
  64.70.kj (Glasses)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374202 and 12004001), Anhui Projects (Grant Nos. 2022AH020009, S020218016, and Z010118169), Hefei City (Grant No. Z020132009), and Anhui University (start-up fund).
Corresponding Authors:  Lijin Wang     E-mail:  lijin.wang@ahu.edu.cn

Cite this article: 

Licun Fu(付立存), Yiming Zheng(郑一鸣), and Lijin Wang(王利近) Low-frequency hybridized excess vibrations of two-dimensional glasses 2024 Chin. Phys. B 33 056401

[1] Kittel C 1996 Introduction to Solid State Physics 7th Edn. (New York: Wiley)
[2] Mizuno H, Shiba H and Ikeda A 2017 Proc. Natl. Acad. Sci. USA 114 E9767
[3] Wang L, Ninarello A, Guan P, Berthier L, Szamel G and Flenner E 2019 Nat. Commun. 10 26
[4] Shimada M, Mizuno H and Ikeda A 2018 Phys. Rev. E 97 022609
[5] Wang L, Szamel G and Flenner E 2021 Phys. Rev. Lett. 127 248001
[6] Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029
[7] Anderson P W, Halperin B I and Varma C M 1972 Philos. Mag. 25 1
[8] Perez-Casta ñeda T, Rodr íguez-Tinoco C, Rodríguez-Viejo J and Ramos M A 2014 Proc. Natl. Acad. Sci. USA 111 11275
[9] Xu N, Vitelli V, Liu A J and Nagel S R 2010 Europhys. Lett. 90 56001
[10] Manning M L and Liu A J 2011 Phys. Rev. Lett. 107 108302
[11] Xu D, Zhang S, Liu A J, Nagel S R and Xu N 2023 Proc. Natl. Acad. Sci. USA 120 e2304974120
[12] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R 2008 Nat. Phys. 4 711
[13] Chen K, Manning M L, Yunker P J, Ellenbroek W G, Zhang Z X, Liu A J and Yodh A G 2011 Phys. Rev. Lett. 107 108301
[14] Wang L, Duan Y and Xu N 2012 Soft Matter 8 11831
[15] Schoenholz S S, Liu A J, Riggleman R A and Rottler J 2014 Phys. Rev. X 4 031014
[16] Wang L, Berthier L, Flenner E, Guan P and Szamel G 2019 Soft Matter 15 7018
[17] Wang L and Xu N 2014 Phys. Rev. Lett. 112 055701
[18] Zylberg J, Lerner E, Bar-Sinai E Y and Bouchbinder E 2017 Proc. Natl. Acad. Sci. USA 114 7289
[19] Flenner E, Wang L and Szamel G 2020 Soft Matter 16 775
[20] Tong H and Xu N 2014 Phys. Rev. E 90 010401
[21] DeGiuli E, Laversanne-Finot A, Düring G, Lerner E and Wyart M 2014 Soft Matter 10 5628
[22] Franz S, Parisi G, Urbani P and Zamponi F 2015 Proc. Nat. Acad. Sci. USA 112 14539
[23] Buchenau U, Galperin Yu M, Gurevich V L and Schober H R 1991 Phys. Rev. B 43 5039
[24] Gurevich V L, Parshin D A and Schober H R 2003 Phys. Rev. B 67 094203
[25] Schober H R and Oligschleger C 1996 Phys. Rev. B 53 11469
[26] Gurarie V and Chalker J T 2003 Phys. Rev. B 68 134207
[27] Kumar A, Procaccia I and Singh M 2021 Europhys. Lett. 135 66001
[28] Schirmacher W, Ruocco G and Scopigno T 2007 Phys. Rev. Lett. 98 025501
[29] Schirmacher W, Paoluzzi M, Mocanu F C, Khomenko D, Szamel G, Zamponi F and Ruocco G 2024 Nat. Commun. 15 3107
[30] Xu N, Liu A J and Nagel S R 2017 Phys. Rev. Lett. 119 215502
[31] Shimada M and DeGiuli E 2022 SciPost Phys. 12 090
[32] Ikeda H 2019 Phys. Rev. E 99 050901
[33] Stanifer E, Morse P K, Middleton A A and Manning M L 2018 Phys. Rev. E 98 042908
[34] Ji W, Popović M, de Geus T W J, Lerner E and Wyart M 2019 Phys. Rev. E 99 023003
[35] Bouchbinder E, Lerner E, Rainone C, Urbani P and Zamponi F 2021 Phys. Rev. B 103 174202
[36] Gartner L and Lerner E 2016 SciPost Phys. 1 016
[37] Wang L, Fu L and Nie Y 2022 J. Chem. Phys. 157 074502
[38] Wang L, Szamel G and Flenner E 2023 J. Chem. Phys. 158 126101
[39] Lerner E and Bouchbinder E 2022 J. Chem. Phys. 157 166101
[40] Lerner E, Düring G and Bouchbinder E 2016 Phys. Rev. Lett. 117 035501
[41] Lerner E 2020 Phys. Rev. E 101 032120
[42] Rainone C, Bouchbinder E and Lerner E 2020 Proc. Natl. Acad. Sci. USA 117 5228
[43] Bonfanti S, Guerra R, Mondal C, Procaccia I and Zapperi S 2020 Phys. Rev. Lett. 125 085501
[44] Richard D, González-López K, Kapteijns G, Pater R, Vaknin T, Bouch- binder E and Lerner E 2020 Phys. Rev. Lett. 125 085502
[45] Kapteijns G, Bouchbinder E and Lerner E 2018 Phys. Rev. Lett. 121 055501
[46] Krishnan V V, Ramola K and Karmakar S 2022 Soft Matter 18 3395
[47] Paoluzzi M, Angelani L, Parisi G and Ruocco G 2019 Phys. Rev. Lett. 123 155502
[48] Shiraishi K, Hara Y and Mizuno H 2022 Phys. Rev. E 106 054611
[49] Shiraishi K, Mizuno H and Ikeda A 2023 J. Chem. Phys. 158 174502
[50] Angelani L, Paoluzzi M, Parisi G and Ruocco G 2018 Proc. Natl. Acad. Sci. USA 115 8700
[51] https://software.intel.com/en-us/mkl/
[52] Sengupta S, Vasconcelos F, Affouard F and Sastry S 2011 J. Chem. Phys. 135 194503
[53] Krekelberg W P, Mittal J, Ganesan V and Truskett T M 2007 J. Chem. Phys. 127 044502
[54] Zhang Z, Yunker P J, Habdas P and Yodh A G 2011 Phys. Rev. Lett. 107 208303
[55] Berthier L and Tarjus G 2009 Phys. Rev. Lett. 103 170601
[56] Sun X, Zhang H, Wang L, Zhang Z and Ma Y 2020 Chin. Phys. B 29 126201
[57] González-López K, Shivam M, Zheng Y, Ciamarra M P and Lerner E 2021 Phys. Rev. E 103 022605
[58] Wang L, Berthier L, Flenner E, Guan P and Szamel G 2019 Soft Matter 15 7018
[59] Wang L, Szamel G and Flenner E 2020 Soft Matter 16 7165
[60] Moriel A, Kapteijns G, Rainone C, Zylberg J, Lerner E and Bouchbinder E 2019 J. Chem. Phys. 151 104503
[61] Fu L and Wang L 2022 Phys. Rev. E 106 054605
[62] Szamel G and Flenner E 2022 J. Chem. Phys. 156 144502
[63] Monaco G and Mossa S 2009 Proc. Natl. Acad. Sci. USA 106 16907
[64] Mizuno H and Ikeda A 2018 Phys. Rev. E 98 062612
[1] Coupling of quasi-localized and phonon modes in glasses at low frequency
Jun Duan(段军), Song-Lin Cai(蔡松林), Gan Ding(丁淦), Lan-Hong Dai(戴兰宏), and Min-Qiang Jiang(蒋敏强). Chin. Phys. B, 2024, 33(5): 056502.
[2] Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level
Delong Fang(方德龙) and Yunkang Cui(崔云康). Chin. Phys. B, 2023, 32(5): 057401.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[5] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[6] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[7] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[8] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[9] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[10] Electronic properties of defects in Weyl semimetal tantalum arsenide
Yan-Long Fu(付艳龙), Chang-Kai Li(李长楷), Zhao-Jun Zhang(张昭军), Hai-Bo Sang(桑海波), Wei Cheng(程伟), Feng-Shou Zhang(张丰收). Chin. Phys. B, 2018, 27(9): 097101.
[11] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
[12] The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study
Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影). Chin. Phys. B, 2017, 26(4): 046303.
[13] Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: First-principles calculations
M A Ali, M R Khatun, N Jahan, M M Hossain. Chin. Phys. B, 2017, 26(3): 033102.
[14] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[15] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
No Suggested Reading articles found!