CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Low-frequency hybridized excess vibrations of two-dimensional glasses |
Licun Fu(付立存), Yiming Zheng(郑一鸣), and Lijin Wang(王利近)† |
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract One hallmark of glasses is the existence of excess vibrational modes at low frequencies $\omega$ beyond Debye's prediction. Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses. However, there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations. In particular, excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow $D_{\rm exc}(\omega) \sim \omega^{2}$ in 2D glasses with an inverse power law potential. Yet, the universality of the quadratic scaling remains unknown, since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum. Here, we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion. Moreover, we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion, which is accompanied by a suppression of the strength of the sound attenuation. Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties.
|
Received: 18 November 2023
Revised: 04 January 2024
Accepted manuscript online: 19 January 2024
|
PACS:
|
64.70.Q-
|
(Theory and modeling of the glass transition)
|
|
64.70.kj
|
(Glasses)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374202 and 12004001), Anhui Projects (Grant Nos. 2022AH020009, S020218016, and Z010118169), Hefei City (Grant No. Z020132009), and Anhui University (start-up fund). |
Corresponding Authors:
Lijin Wang
E-mail: lijin.wang@ahu.edu.cn
|
Cite this article:
Licun Fu(付立存), Yiming Zheng(郑一鸣), and Lijin Wang(王利近) Low-frequency hybridized excess vibrations of two-dimensional glasses 2024 Chin. Phys. B 33 056401
|
[1] Kittel C 1996 Introduction to Solid State Physics 7th Edn. (New York: Wiley) [2] Mizuno H, Shiba H and Ikeda A 2017 Proc. Natl. Acad. Sci. USA 114 E9767 [3] Wang L, Ninarello A, Guan P, Berthier L, Szamel G and Flenner E 2019 Nat. Commun. 10 26 [4] Shimada M, Mizuno H and Ikeda A 2018 Phys. Rev. E 97 022609 [5] Wang L, Szamel G and Flenner E 2021 Phys. Rev. Lett. 127 248001 [6] Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029 [7] Anderson P W, Halperin B I and Varma C M 1972 Philos. Mag. 25 1 [8] Perez-Casta ñeda T, Rodr íguez-Tinoco C, Rodríguez-Viejo J and Ramos M A 2014 Proc. Natl. Acad. Sci. USA 111 11275 [9] Xu N, Vitelli V, Liu A J and Nagel S R 2010 Europhys. Lett. 90 56001 [10] Manning M L and Liu A J 2011 Phys. Rev. Lett. 107 108302 [11] Xu D, Zhang S, Liu A J, Nagel S R and Xu N 2023 Proc. Natl. Acad. Sci. USA 120 e2304974120 [12] Widmer-Cooper A, Perry H, Harrowell P and Reichman D R 2008 Nat. Phys. 4 711 [13] Chen K, Manning M L, Yunker P J, Ellenbroek W G, Zhang Z X, Liu A J and Yodh A G 2011 Phys. Rev. Lett. 107 108301 [14] Wang L, Duan Y and Xu N 2012 Soft Matter 8 11831 [15] Schoenholz S S, Liu A J, Riggleman R A and Rottler J 2014 Phys. Rev. X 4 031014 [16] Wang L, Berthier L, Flenner E, Guan P and Szamel G 2019 Soft Matter 15 7018 [17] Wang L and Xu N 2014 Phys. Rev. Lett. 112 055701 [18] Zylberg J, Lerner E, Bar-Sinai E Y and Bouchbinder E 2017 Proc. Natl. Acad. Sci. USA 114 7289 [19] Flenner E, Wang L and Szamel G 2020 Soft Matter 16 775 [20] Tong H and Xu N 2014 Phys. Rev. E 90 010401 [21] DeGiuli E, Laversanne-Finot A, Düring G, Lerner E and Wyart M 2014 Soft Matter 10 5628 [22] Franz S, Parisi G, Urbani P and Zamponi F 2015 Proc. Nat. Acad. Sci. USA 112 14539 [23] Buchenau U, Galperin Yu M, Gurevich V L and Schober H R 1991 Phys. Rev. B 43 5039 [24] Gurevich V L, Parshin D A and Schober H R 2003 Phys. Rev. B 67 094203 [25] Schober H R and Oligschleger C 1996 Phys. Rev. B 53 11469 [26] Gurarie V and Chalker J T 2003 Phys. Rev. B 68 134207 [27] Kumar A, Procaccia I and Singh M 2021 Europhys. Lett. 135 66001 [28] Schirmacher W, Ruocco G and Scopigno T 2007 Phys. Rev. Lett. 98 025501 [29] Schirmacher W, Paoluzzi M, Mocanu F C, Khomenko D, Szamel G, Zamponi F and Ruocco G 2024 Nat. Commun. 15 3107 [30] Xu N, Liu A J and Nagel S R 2017 Phys. Rev. Lett. 119 215502 [31] Shimada M and DeGiuli E 2022 SciPost Phys. 12 090 [32] Ikeda H 2019 Phys. Rev. E 99 050901 [33] Stanifer E, Morse P K, Middleton A A and Manning M L 2018 Phys. Rev. E 98 042908 [34] Ji W, Popović M, de Geus T W J, Lerner E and Wyart M 2019 Phys. Rev. E 99 023003 [35] Bouchbinder E, Lerner E, Rainone C, Urbani P and Zamponi F 2021 Phys. Rev. B 103 174202 [36] Gartner L and Lerner E 2016 SciPost Phys. 1 016 [37] Wang L, Fu L and Nie Y 2022 J. Chem. Phys. 157 074502 [38] Wang L, Szamel G and Flenner E 2023 J. Chem. Phys. 158 126101 [39] Lerner E and Bouchbinder E 2022 J. Chem. Phys. 157 166101 [40] Lerner E, Düring G and Bouchbinder E 2016 Phys. Rev. Lett. 117 035501 [41] Lerner E 2020 Phys. Rev. E 101 032120 [42] Rainone C, Bouchbinder E and Lerner E 2020 Proc. Natl. Acad. Sci. USA 117 5228 [43] Bonfanti S, Guerra R, Mondal C, Procaccia I and Zapperi S 2020 Phys. Rev. Lett. 125 085501 [44] Richard D, González-López K, Kapteijns G, Pater R, Vaknin T, Bouch- binder E and Lerner E 2020 Phys. Rev. Lett. 125 085502 [45] Kapteijns G, Bouchbinder E and Lerner E 2018 Phys. Rev. Lett. 121 055501 [46] Krishnan V V, Ramola K and Karmakar S 2022 Soft Matter 18 3395 [47] Paoluzzi M, Angelani L, Parisi G and Ruocco G 2019 Phys. Rev. Lett. 123 155502 [48] Shiraishi K, Hara Y and Mizuno H 2022 Phys. Rev. E 106 054611 [49] Shiraishi K, Mizuno H and Ikeda A 2023 J. Chem. Phys. 158 174502 [50] Angelani L, Paoluzzi M, Parisi G and Ruocco G 2018 Proc. Natl. Acad. Sci. USA 115 8700 [51] https://software.intel.com/en-us/mkl/ [52] Sengupta S, Vasconcelos F, Affouard F and Sastry S 2011 J. Chem. Phys. 135 194503 [53] Krekelberg W P, Mittal J, Ganesan V and Truskett T M 2007 J. Chem. Phys. 127 044502 [54] Zhang Z, Yunker P J, Habdas P and Yodh A G 2011 Phys. Rev. Lett. 107 208303 [55] Berthier L and Tarjus G 2009 Phys. Rev. Lett. 103 170601 [56] Sun X, Zhang H, Wang L, Zhang Z and Ma Y 2020 Chin. Phys. B 29 126201 [57] González-López K, Shivam M, Zheng Y, Ciamarra M P and Lerner E 2021 Phys. Rev. E 103 022605 [58] Wang L, Berthier L, Flenner E, Guan P and Szamel G 2019 Soft Matter 15 7018 [59] Wang L, Szamel G and Flenner E 2020 Soft Matter 16 7165 [60] Moriel A, Kapteijns G, Rainone C, Zylberg J, Lerner E and Bouchbinder E 2019 J. Chem. Phys. 151 104503 [61] Fu L and Wang L 2022 Phys. Rev. E 106 054605 [62] Szamel G and Flenner E 2022 J. Chem. Phys. 156 144502 [63] Monaco G and Mossa S 2009 Proc. Natl. Acad. Sci. USA 106 16907 [64] Mizuno H and Ikeda A 2018 Phys. Rev. E 98 062612 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|