Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 056201    DOI: 10.1088/1674-1056/ad2b53
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure study on calcium azide (Ca(N3)2): Bending of azide ions stabilizes the structure

Xiaoxin Wu(武晓鑫)1,2, Yingjian Wang(王颖健)1,2, Siqi Li(李思琪)1,2, Juncheng Lv(吕俊呈)1,2, Jingshu Wang(王婧姝)1,2, Lihua Yang(杨丽华)1,2, Qi Zhang(张旗)1,2, Yanqing Liu(刘艳清)1,2, Junkai Zhang(张俊凯)1,2,†, and Hongsheng Jia(贾洪声)1,2
1 Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China;
2 The Joint Laboratory of MXene Materials, Jilin Normal University & Jilin 11 Technology Co., Ltd., Changchun 130103, China
Abstract  The high-pressure structure and elastic properties of calcium azide (Ca(N$_{3}$)$_{2}$) were investigated using in-situ high-pressure x-ray diffraction and Raman scattering up to 54 GPa and 19 GPa, respectively. The compressibility of Ca(N$_{3}$)$_{2}$ changed as the pressure increased, and no phase transition occurred within the pressure from ambient pressure up to 54 GPa. The measured zero-pressure bulk modulus of Ca(N$_{3}$)$_{2 }$ is higher than that of other alkali metal azides, due to differences in the ionic character of their metal-azide bonds. Using CASTEP, all vibration modes of Ca(N$_{3}$)$_{2}$ were accurately identified in the vibrational spectrum at ambient pressure. In the high-pressure vibration study, several external modes (ext.) and internal bending modes ($\nu _2$) of azide anions (N$_{3}^{-}$) softened up to $\sim 7$ GPa and then hardened beyond that pressure. This evidence is consistent with the variation observed in the $F_{\rm E}$-$f_{\rm E}$ data analyzed from the XRD result, where the slope of the curve changes at 7.1 GPa. The main behaviors under pressure are the alternating compression, rotation, and bending of N$_{3}^{-}$ ions. The bending behavior makes the structure of Ca(N$_{3}$)$_{2}$ more stable under pressure.
Keywords:  high pressure      calcium azide      azide anions  
Received:  18 December 2023      Revised:  05 February 2024      Accepted manuscript online:  21 February 2024
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported financially by the Program for the Development of Science and Technology of Jilin Province, China (Grant Nos. YDZJ202301ZYTS382, YDZJ202201ZYTS316, and 20230101285JC), the National Natural Science Foundation of China (Grant No. 11904128), the Program for Science and Technology of Education Department of Jilin Province, China (Grant Nos. JJKH20220438KJ and JJKH20220423KJ), and the Program for the Jilin Provincial Development and Reform Commission Project (Grant No. 2022C040-6).
Corresponding Authors:  Junkai Zhang, Hongsheng Jia     E-mail:  zjk8688@126.com;jiahs@jlnu.edu.cn

Cite this article: 

Xiaoxin Wu(武晓鑫), Yingjian Wang(王颖健), Siqi Li(李思琪), Juncheng Lv(吕俊呈), Jingshu Wang(王婧姝), Lihua Yang(杨丽华), Qi Zhang(张旗), Yanqing Liu(刘艳清), Junkai Zhang(张俊凯), and Hongsheng Jia(贾洪声) High-pressure study on calcium azide (Ca(N3)2): Bending of azide ions stabilizes the structure 2024 Chin. Phys. B 33 056201

[1] Curtius T 1890 Berichte der deutschen chemischen Gesellschaft 23 3023
[2] Evans B L, Yoffe A D and Gray P 1959 Chem. Rev. 59 515
[3] Gray P 1963 Quarterly Reviews, Chemical Society 17 441
[4] Ti S S, Kettle S F A and Ra 1977 Journal of Raman Spectroscopy 6 5
[5] Evans B L and Yoffe A D 1957 Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 238 568
[6] Rao K R 1970 J. Chem. Phys. 53 4661
[7] Rafizadeh H A, Yip S and Prask H 1972 J. Chem. Phys. 56 5377
[8] Younk E H and Kunz A B 1997 Int. J. Quantum Chem. 63 615
[9] Badgujar D M, Talawar M B, Asthana S N and Mahulikar P P 2008 Journal of Hazardous Materials 151 289
[10] Eremets M I, Popov M Y, Trojan I A, Denisov V N, Boehler R and Hemley R J 2004 J. Chem. Phys. 120 10618
[11] Eremets M I, Hemley R J, Mao H K and Gregoryanz E 2001 Nature 411 170
[12] Goncharov A F, Gregoryanz E, Mao H K, Liu Z and Hemley R J 2000 Phys. Rev. Lett. 85 1262
[13] Medvedev S A, Trojan I A, Eremets M I, Palasyuk T, Klapötke T M and Evers J 2009 J. Phys.: Condens. Matter 21 195404
[14] Zhu H, Zhang F, Ji C, Hou D, Wu J, Hannon T and Ma Y 2013 J. Appl. Phys. 113 033511
[15] Ji C, Zheng R, Hou D, Zhu H, Wu J, Chyu M C and Ma Y 2012 J. Appl. Phys. 111 112613
[16] Li D, Wu X, Jiang J, Zhang J, Cui Q, Zhu H and Wang X 2014 Appl. Phys. Lett. 105 071903
[17] Hou D, Zhang F, Ji C, Hannon T, Zhu H, Wu J and Ma Y 2011 Phys. Rev. B 84 064127
[18] Hou D, Zhang F, Ji C, Hannon T, Zhu H, Wu J, Levitas V I and Ma Y 2011 J. Appl. Phys. 110 23524
[19] Wu X, Cui H, Zhang J, Cong R, Zhu H and Cui Q 2013 Appl. Phys. Lett. 102 121902
[20] Wu X, Ma F, Ma C, Cui H, Liu Z, Zhu H, Wang X and Cui Q 2014 J. Chem. Phys. 141 024703
[21] Zhu H, Han X, Zhu P, Wu X, Chen Y, Li M, Li X and Cui Q 2016 J. Phys. Chem. C 120 12423
[22] Dong F, Cheng X and Ge S 2007 J. Theor. Comput. Chem. 06 487
[23] Garner W E and Maggs J 1939 Proceedings of the Royal Society A 172 299
[24] Deb S K 1963 Transactions of the Faraday Society 59 1423
[25] Zhu W, Xu X and Xiao H 2007 J. Phys. Chem. Solids 68 1762
[26] Zhu W and Xiao H 2010 Structural Chemistry 21 657
[27] Zhu W, Xiao J and Xiao H 2006 J. Phys. Chem. B 110 9856
[28] Krischner H and Kelz G 1982 Zeitschrift für anorganische und allge- meine Chemie 494 203
[29] Reckeweg O and Simon A 2003 Zeitschrift für Naturforschung B 58 1097
[30] Mao H K, Xu J and Bell P M 1986 Journal of Geophysical Research: Solid Earth 91 4673
[31] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[32] Mauer F A, Hubbard C R and Hahn T 1973 J. Chem. Phys. 59 3770
[33] Angel R J 2000 Reviews in Mineralogy and Geochemistry 41 35
[34] Gomis O, Santamaría-Pérez D, Vilaplana R, Luna R, Sans J A, Manj on F J, Errandonea D, Perez-Gonz ález E, Rodr íguez-Hernandez P, Muñoz A, Tiginyanu I M and Ursaki V V 2014 J. Alloys Compd. 583 70
[35] Panchal V, López-Moreno S, Santamar ía-Pérez D, Errandonea D, Manjon F J, Rodríguez-Hernandez P, Muñoz A, Achary S N and Tyagi A K 2011 Phys. Rev. B 84 024111
[1] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[2] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[3] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[4] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[5] Ultrafast dynamics in photo-excited Mott insulator Sr3Ir2O7 at high pressure
Xia Yin(尹霞), Jianbo Zhang(张建波), Wang Dong(王东), Takeshi Nakagawa, Chunsheng Xia(夏春生), Caoshun Zhang(张曹顺), Weicheng Guo(郭伟程), Jun Chang(昌峻), and Yang Ding(丁阳). Chin. Phys. B, 2024, 33(1): 016103.
[6] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[7] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[8] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[9] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[10] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[11] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[12] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[13] Structural stability and ion migration of Li2MnO3 cathode material under high pressures
Ze-Ren Xie(谢泽仁), Si-Si Zhou(周思思), Bei-Bei He(贺贝贝), Huan-Wen Wang(王欢文), Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(张祥功), and Rui Wang(汪锐). Chin. Phys. B, 2023, 32(12): 126101.
[14] Chair-like N66- in AlN3 with high-energy density
Shi-Tai Guo(郭世泰), Zhen-Zhen Xu(徐真真), Yan-Lei Geng(耿延雷), Qi Rui(芮琦), Dian-Chen Du(杜殿臣), Jian-Fu Li(李建福), and Xiao-Li Wang(王晓丽). Chin. Phys. B, 2023, 32(12): 126202.
[15] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
No Suggested Reading articles found!