Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 065202    DOI: 10.1088/1674-1056/ad24d3
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes

Haiyuan Wang(王海源)1, Shuai Jiang(姜帅)1, Tong Liu(刘桐)1,†, Lai Wei(魏来)1, Qibin Luan(栾其斌)2, and Zheng-Xiong Wang(王正汹)1
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams of the Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  A numerical study of the diamagnetic drift effect on the nonlinear interaction between multi-helicity neoclassical tearing modes (NTMs) is carried out using a set of four-field equations including two-fluid effects. The results show that, in contrast to the single-fluid case, 5/3 NTM cannot be completely suppressed by 3/2 NTM with diamagnetic drift flow. Both modes exhibit oscillation and coexist in the saturated phase. To better understand the effect of the diamagnetic drift flow on multiple-helicity NTMs, the influence of typical relevant parameters is investigated. It is found that the average saturated magnetic island width increases with increasing bootstrap current fraction $f_{\rm b}$ but decreases with the ion skin depth $\delta $. In addition, as the ratio of parallel to perpendicular transport coefficients $\chi_{\parallel }/\chi_{\bot }$ increases, the average saturated magnetic island widths of the 3/2 and 5/3 NTMs increase. The underlying mechanisms behind these observations are discussed in detail.
Keywords:  tokamak      two-fluid      neoclassical tearing modes      multi-helicity  
Received:  25 September 2023      Revised:  23 January 2024      Accepted manuscript online:  01 February 2024
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.55.Tn (Ideal and resistive MHD modes; kinetic modes)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFE03090000), the National Natural Science Foundation of China (Grant Nos. 11925501 and 12075048), and the Fundament Research Funds for the Central Universities (Grant No. DUT22ZD215).
Corresponding Authors:  Tong Liu     E-mail:  liutong@dlut.edu.cn

Cite this article: 

Haiyuan Wang(王海源), Shuai Jiang(姜帅), Tong Liu(刘桐), Lai Wei(魏来), Qibin Luan(栾其斌), and Zheng-Xiong Wang(王正汹) Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes 2024 Chin. Phys. B 33 065202

[1] Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001
[2] Miao Y, Hao G Z, Liu Y, He H D, Chen W, Wang Y Q, Wang A K and Xu M 2021 Chin. Phys. Lett. 38 085202
[3] Zhang H and Ma Z 2023 Plasma Sci. Technol. 25 045105
[4] Cai H and Li D 2022 Natl. Sci. Rev. 9 nwac019
[5] Ren Z, Liu J, Wang F, Cai H, Wang Z and Shen W 2020 Plasma Sci. Technol. 22 065102
[6] Shi H, Zhang W, Dong C, Bao J, Lin Z, Cao J and Li D 2020 Chin. Phys. Lett. 37 085201
[7] Sun W, Wang J, Wei L, Wang Z, Liu D and He Q 2022 Chin. Phys. B 31 110203
[8] Wang H, Wang Z X, Liu T and Zhu X L 2023 Chin. Phys. Lett. 40 075201
[9] Fitzpatrick R 1995 Phys. Plasmas 2 825
[10] Bickerton R J, Connor J W and Taylor J B 1971 Nat. Phys. Sci. 229 110
[11] Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M and Zarnstorff M C 1995 Phys. Rev. Lett. 74 4663
[12] JET Team 1999 Nucl. Fusion 39 1965
[13] Gude A, Günter S, Maraschek M, Zohm H and the ASDEX Upgrade Team 2002 Nucl. Fusion 42 833
[14] Isayama A, Kamada Y, Ozeki T, Ide S, Fujita T, Oikawa T, Suzuki T, Neyatani Y, Isei N, Hamamatsu K, Ikeda Y, Takahashi K, Kajiwara K and JT-60 Team 2001 Nucl. Fusion 41 761
[15] La Haye R J, Lao L L, Strait E J and Taylor T S 1997 Nucl. Fusion 37 397
[16] Ji X Q, Yang Q W, Liu Y, Zhou J, Feng B B and Yuan B S 2010 Chin. Phys. Lett. 27 065202
[17] Shi T, Wan B, Shen B, Sun Y, Qian J, Hu L, Gong X, Liu G, Luo Z, Zhong G, Xu L, Zhang J, Lin S, Jie Y, Wang F and Lv B 2013 Plasma Phys. Control. Fusion 55 055007
[18] Buttery R J, Günter S, Giruzzi G, Hender T C, Howell D, Huysmans G, La Haye R J, Maraschek M, Reimerdes H, Sauter O, Warrick C D, Wilson H R and Zohm H 2000 Plasma Phys. Control. Fusion 42 B61
[19] La Haye R J 2006 Phys. Plasmas 13 055501
[20] Sauter O, Henderson M A, Ramponi G, Zohm H and Zucca C 2010 Plasma Phys. Control. Fusion 52 025002
[21] Jiang S, Tang W, Wei L, Liu T, Xu H and Wang Z 2022 Plasma Sci. Technol. 24 055101
[22] Liu T, Wang Z X, Wei L and Wang J 2022 Nucl. Fusion 62 056018
[23] Liu T, Wei L, Wang F and Wang Z X 2021 Chin. Phys. Lett. 38 045204
[24] Tang W, Wei L, Wang Z, Wang J, Liu T and Zheng S 2019 Plasma Sci. Technol. 21 065103
[25] Wang Z X, Tang W and Wei L 2022 Plasma Sci. Technol. 24 033001
[26] Wang Z X, Liu T and Wei L 2022 Rev. Mod. Plasma Phys. 6 14
[27] Günter S, Gude A, Maraschek M, Yu Q and the ASDEX Upgrade Team 1999 Plasma Phys. Control. Fusion 41 767
[28] Bardoczi L, Logan N C and Strait E J 2021 Phys. Rev. Lett. 127 055002
[29] Baruzzo M, Alper B, Bolzonella T, Brix M, Buratti P, Challis C D, Crisanti F, de la Luna E, de Vries P C, Giroud C, Hawkes N C, Howell D F, Imbeaux F, Joffrin E, Koslowski H R, Litaudon X, Mailloux J, Sips A C C and Tudisco O 2010 Plasma Phys. Control. Fusion 52 075001
[30] He Y, Wang N, Ding Y, Li D, Zhou S, Mao F, Shen C, Jia R, Ren Z, Gao Y, Zhang Z, Li S, Huang Z, Chen H, Zhao C, Bala A A, Zhang W, Xie X, Chen Z, Yang Z, Chen Z, Yu Q and Pan Y 2023 Plasma Phys. Control. Fusion 65 035012
[31] Sauter O, Buttery R J, Felton R, Hender T C, Howell D F and the EFDA-JET Workprogramme 2002 Plasma Phys. Control. Fusion 44 1999
[32] Yu Q 2007 Nucl. Fusion 47 1244
[33] Li D and Huo Y 1994 Phys. Plasmas 1 315
[34] Yu Q, Günter S, Lackner K, Gude A and Maraschek M 2000 Nucl. Fusion 40 2031
[35] Yu Q, Günter S and Lackner K 2000 Phys. Rev. Lett. 85 2949
[36] Chandra D, Agullo O, Benkadda S, Garbet X and Sen A 2013 Phys. Plasmas 20 042505
[37] Wei L, Wang Z X, Wang J and Yang X 2016 Nucl. Fusion 56 106015
[38] Liu T, Wang J, Wei L and Wang Z X 2020 Nucl. Fusion 60 106009
[39] Koslowski H R, Westerhof E, Bock M D, Classen I, Jaspers R, Kikuchi Y, Krämer-Flecken A, Lazaros A, Liang Y, Löwenbrück K, Varshney S, Hellermann M V, Wolf R, Zimmermann O and the TEXTOR team 2006 Plasma Phys. Control. Fusion 48 B53
[40] De Bock M F M, Classen I G J, Busch C, Jaspers R J E, Koslowski H R and the TEXTOR Team 2008 Nucl. Fusion 48 015007
[41] Yu Q, Günter S and Lackner K 2021 Nucl. Fusion 61 036040
[42] Yu Q 2010 Nucl. Fusion 50 025014
[43] Fitzpatrick R 2018 Phys. Plasmas 25 112505
[44] Hu Z Q, Ye C, Wei L and Wang Z X 2020 Phys. Plasmas 27 012504
[45] Tang W, Luan Q, Sun H, Wei L, Lu S, Jiang S, Xu J and Wang Z 2023 Plasma Sci. Technol. 25 045103
[46] Zhang W, Ma Z W and Wang S 2017 Phys. Plasmas 24 102510
[47] Zhang W, Ma Z W and Zhang H W 2021 Nucl. Fusion 61 126052
[48] Aiba N, Chen X, Osborne T H and Burrell K H 2023 Nucl. Fusion 63 042001
[49] Hazeltine R D, Kotschenreuther M and Morrison P J 1985 Phys. Fluids 28 2466
[50] Sato M and Wakatani M 2005 Nucl. Fusion 45 143
[51] Glasser A H, Greene J M and Johnson J L 1975 Phys. Fluids 18 875
[52] Lütjens H, Luciani J F and Garbet X 2001 Plasma Phys. Control. Fusion 43 A339
[53] Glasser A H, Greene J M and Johnson J L 1976 Phys. Fluids 19 567
[54] Lütjens H and Luciani J-F 2002 Phys. Plasmas 9 4837
[55] Urso L, Maraschek M, Zohm H and ASDEX Upgrade Team 2005 J. Phys.: Conf. Series 25 266
[56] Hu Q M, Nazikian R, Chen X, Yu Q, Austin M E, Bortolon A, Ernst D, Haskey S R, Park J K, Yan Z and Yu G Y 2023 Phys. Plasmas 30 020701
[57] Ye C, Wang Z X, Wei L and Hu Z Q 2019 Nucl. Fusion 59 096044
[58] Paz-Soldan C, Hu Q, Logan N C and Park J K 2022 Nucl. Fusion 62 126007
[59] Nazikian R, Hu Q, Ashourvan A, Eldon D, Evans T E, Grierson B A, Logan N C, Orlov D M, Park J K, Paz-Soldan C, Poli F M and Yu Q 2021 Nucl. Fusion 61 044001
[60] Hu Q M, Nazikian R, Grierson B A, Logan N C, Orlov D M, PazSoldan C and Yu Q 2020 Phys. Rev. Lett. 125 045001
[1] Long radial coherence of electron temperature fluctuations in non-local transport in HL-2A plasmas
Zhongbing Shi(石中兵), Kairui Fang(方凯锐), Jingchun Li(李景春), Xiaolan Zou(邹晓岚), Zhaoyang Lu(卢兆旸), Jie Wen(闻杰), Zhanhui Wang(王占辉), Xuantong Ding(丁玄同), Wei Chen(陈伟), Zengchen Yang(杨曾辰), Min Jiang(蒋敏), Xiaoquan Ji(季小全), Ruihai Tong(佟瑞海), Yonggao Li(李永高), Peiwan Shi(施陪万), Wulyv Zhong(钟武律), and Min Xu(许敏). Chin. Phys. B, 2024, 33(2): 025202.
[2] Numerical study of alpha particle loss with toroidal field ripple based on CFETR steady-state scenario
Niuqi Li(李钮琦), Yingfeng Xu(徐颖峰), Fangchuan Zhong(钟方川), and Debing Zhang(张德兵). Chin. Phys. B, 2024, 33(1): 015202.
[3] Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma
Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[4] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[5] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[6] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[7] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[8] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[9] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[10] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[11] Stability impacts from the current and pressure profile modifications within finite sized island
Yuxiang Sun(孙宇翔) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075212.
[12] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[13] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[14] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[15] Temperature and current sensitivity extraction of optical superconducting transition-edge sensors based on a two-fluid model
Yue Geng(耿悦), Pei-Zhan Li(李佩展), Jia-Qiang Zhong(钟家强), Wen Zhang(张文), Zheng Wang(王争), Wei Miao(缪巍), Yuan Ren(任远), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2021, 30(9): 098501.
No Suggested Reading articles found!