PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes |
Haiyuan Wang(王海源)1, Shuai Jiang(姜帅)1, Tong Liu(刘桐)1,†, Lai Wei(魏来)1, Qibin Luan(栾其斌)2, and Zheng-Xiong Wang(王正汹)1 |
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams of the Ministry of Education, School of Physics, Dalian University of Technology, Dalian 116024, China; 2 Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract A numerical study of the diamagnetic drift effect on the nonlinear interaction between multi-helicity neoclassical tearing modes (NTMs) is carried out using a set of four-field equations including two-fluid effects. The results show that, in contrast to the single-fluid case, 5/3 NTM cannot be completely suppressed by 3/2 NTM with diamagnetic drift flow. Both modes exhibit oscillation and coexist in the saturated phase. To better understand the effect of the diamagnetic drift flow on multiple-helicity NTMs, the influence of typical relevant parameters is investigated. It is found that the average saturated magnetic island width increases with increasing bootstrap current fraction $f_{\rm b}$ but decreases with the ion skin depth $\delta $. In addition, as the ratio of parallel to perpendicular transport coefficients $\chi_{\parallel }/\chi_{\bot }$ increases, the average saturated magnetic island widths of the 3/2 and 5/3 NTMs increase. The underlying mechanisms behind these observations are discussed in detail.
|
Received: 25 September 2023
Revised: 23 January 2024
Accepted manuscript online: 01 February 2024
|
PACS:
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
52.55.Tn
|
(Ideal and resistive MHD modes; kinetic modes)
|
|
Fund: Project supported by the National Key R&D Program
of China (Grant No. 2022YFE03090000), the National Natural Science Foundation of China (Grant Nos. 11925501 and
12075048), and the Fundament Research Funds for the Central Universities (Grant No. DUT22ZD215). |
Corresponding Authors:
Tong Liu
E-mail: liutong@dlut.edu.cn
|
Cite this article:
Haiyuan Wang(王海源), Shuai Jiang(姜帅), Tong Liu(刘桐), Lai Wei(魏来), Qibin Luan(栾其斌), and Zheng-Xiong Wang(王正汹) Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes 2024 Chin. Phys. B 33 065202
|
[1] Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001 [2] Miao Y, Hao G Z, Liu Y, He H D, Chen W, Wang Y Q, Wang A K and Xu M 2021 Chin. Phys. Lett. 38 085202 [3] Zhang H and Ma Z 2023 Plasma Sci. Technol. 25 045105 [4] Cai H and Li D 2022 Natl. Sci. Rev. 9 nwac019 [5] Ren Z, Liu J, Wang F, Cai H, Wang Z and Shen W 2020 Plasma Sci. Technol. 22 065102 [6] Shi H, Zhang W, Dong C, Bao J, Lin Z, Cao J and Li D 2020 Chin. Phys. Lett. 37 085201 [7] Sun W, Wang J, Wei L, Wang Z, Liu D and He Q 2022 Chin. Phys. B 31 110203 [8] Wang H, Wang Z X, Liu T and Zhu X L 2023 Chin. Phys. Lett. 40 075201 [9] Fitzpatrick R 1995 Phys. Plasmas 2 825 [10] Bickerton R J, Connor J W and Taylor J B 1971 Nat. Phys. Sci. 229 110 [11] Chang Z, Callen J D, Fredrickson E D, Budny R V, Hegna C C, McGuire K M and Zarnstorff M C 1995 Phys. Rev. Lett. 74 4663 [12] JET Team 1999 Nucl. Fusion 39 1965 [13] Gude A, Günter S, Maraschek M, Zohm H and the ASDEX Upgrade Team 2002 Nucl. Fusion 42 833 [14] Isayama A, Kamada Y, Ozeki T, Ide S, Fujita T, Oikawa T, Suzuki T, Neyatani Y, Isei N, Hamamatsu K, Ikeda Y, Takahashi K, Kajiwara K and JT-60 Team 2001 Nucl. Fusion 41 761 [15] La Haye R J, Lao L L, Strait E J and Taylor T S 1997 Nucl. Fusion 37 397 [16] Ji X Q, Yang Q W, Liu Y, Zhou J, Feng B B and Yuan B S 2010 Chin. Phys. Lett. 27 065202 [17] Shi T, Wan B, Shen B, Sun Y, Qian J, Hu L, Gong X, Liu G, Luo Z, Zhong G, Xu L, Zhang J, Lin S, Jie Y, Wang F and Lv B 2013 Plasma Phys. Control. Fusion 55 055007 [18] Buttery R J, Günter S, Giruzzi G, Hender T C, Howell D, Huysmans G, La Haye R J, Maraschek M, Reimerdes H, Sauter O, Warrick C D, Wilson H R and Zohm H 2000 Plasma Phys. Control. Fusion 42 B61 [19] La Haye R J 2006 Phys. Plasmas 13 055501 [20] Sauter O, Henderson M A, Ramponi G, Zohm H and Zucca C 2010 Plasma Phys. Control. Fusion 52 025002 [21] Jiang S, Tang W, Wei L, Liu T, Xu H and Wang Z 2022 Plasma Sci. Technol. 24 055101 [22] Liu T, Wang Z X, Wei L and Wang J 2022 Nucl. Fusion 62 056018 [23] Liu T, Wei L, Wang F and Wang Z X 2021 Chin. Phys. Lett. 38 045204 [24] Tang W, Wei L, Wang Z, Wang J, Liu T and Zheng S 2019 Plasma Sci. Technol. 21 065103 [25] Wang Z X, Tang W and Wei L 2022 Plasma Sci. Technol. 24 033001 [26] Wang Z X, Liu T and Wei L 2022 Rev. Mod. Plasma Phys. 6 14 [27] Günter S, Gude A, Maraschek M, Yu Q and the ASDEX Upgrade Team 1999 Plasma Phys. Control. Fusion 41 767 [28] Bardoczi L, Logan N C and Strait E J 2021 Phys. Rev. Lett. 127 055002 [29] Baruzzo M, Alper B, Bolzonella T, Brix M, Buratti P, Challis C D, Crisanti F, de la Luna E, de Vries P C, Giroud C, Hawkes N C, Howell D F, Imbeaux F, Joffrin E, Koslowski H R, Litaudon X, Mailloux J, Sips A C C and Tudisco O 2010 Plasma Phys. Control. Fusion 52 075001 [30] He Y, Wang N, Ding Y, Li D, Zhou S, Mao F, Shen C, Jia R, Ren Z, Gao Y, Zhang Z, Li S, Huang Z, Chen H, Zhao C, Bala A A, Zhang W, Xie X, Chen Z, Yang Z, Chen Z, Yu Q and Pan Y 2023 Plasma Phys. Control. Fusion 65 035012 [31] Sauter O, Buttery R J, Felton R, Hender T C, Howell D F and the EFDA-JET Workprogramme 2002 Plasma Phys. Control. Fusion 44 1999 [32] Yu Q 2007 Nucl. Fusion 47 1244 [33] Li D and Huo Y 1994 Phys. Plasmas 1 315 [34] Yu Q, Günter S, Lackner K, Gude A and Maraschek M 2000 Nucl. Fusion 40 2031 [35] Yu Q, Günter S and Lackner K 2000 Phys. Rev. Lett. 85 2949 [36] Chandra D, Agullo O, Benkadda S, Garbet X and Sen A 2013 Phys. Plasmas 20 042505 [37] Wei L, Wang Z X, Wang J and Yang X 2016 Nucl. Fusion 56 106015 [38] Liu T, Wang J, Wei L and Wang Z X 2020 Nucl. Fusion 60 106009 [39] Koslowski H R, Westerhof E, Bock M D, Classen I, Jaspers R, Kikuchi Y, Krämer-Flecken A, Lazaros A, Liang Y, Löwenbrück K, Varshney S, Hellermann M V, Wolf R, Zimmermann O and the TEXTOR team 2006 Plasma Phys. Control. Fusion 48 B53 [40] De Bock M F M, Classen I G J, Busch C, Jaspers R J E, Koslowski H R and the TEXTOR Team 2008 Nucl. Fusion 48 015007 [41] Yu Q, Günter S and Lackner K 2021 Nucl. Fusion 61 036040 [42] Yu Q 2010 Nucl. Fusion 50 025014 [43] Fitzpatrick R 2018 Phys. Plasmas 25 112505 [44] Hu Z Q, Ye C, Wei L and Wang Z X 2020 Phys. Plasmas 27 012504 [45] Tang W, Luan Q, Sun H, Wei L, Lu S, Jiang S, Xu J and Wang Z 2023 Plasma Sci. Technol. 25 045103 [46] Zhang W, Ma Z W and Wang S 2017 Phys. Plasmas 24 102510 [47] Zhang W, Ma Z W and Zhang H W 2021 Nucl. Fusion 61 126052 [48] Aiba N, Chen X, Osborne T H and Burrell K H 2023 Nucl. Fusion 63 042001 [49] Hazeltine R D, Kotschenreuther M and Morrison P J 1985 Phys. Fluids 28 2466 [50] Sato M and Wakatani M 2005 Nucl. Fusion 45 143 [51] Glasser A H, Greene J M and Johnson J L 1975 Phys. Fluids 18 875 [52] Lütjens H, Luciani J F and Garbet X 2001 Plasma Phys. Control. Fusion 43 A339 [53] Glasser A H, Greene J M and Johnson J L 1976 Phys. Fluids 19 567 [54] Lütjens H and Luciani J-F 2002 Phys. Plasmas 9 4837 [55] Urso L, Maraschek M, Zohm H and ASDEX Upgrade Team 2005 J. Phys.: Conf. Series 25 266 [56] Hu Q M, Nazikian R, Chen X, Yu Q, Austin M E, Bortolon A, Ernst D, Haskey S R, Park J K, Yan Z and Yu G Y 2023 Phys. Plasmas 30 020701 [57] Ye C, Wang Z X, Wei L and Hu Z Q 2019 Nucl. Fusion 59 096044 [58] Paz-Soldan C, Hu Q, Logan N C and Park J K 2022 Nucl. Fusion 62 126007 [59] Nazikian R, Hu Q, Ashourvan A, Eldon D, Evans T E, Grierson B A, Logan N C, Orlov D M, Park J K, Paz-Soldan C, Poli F M and Yu Q 2021 Nucl. Fusion 61 044001 [60] Hu Q M, Nazikian R, Grierson B A, Logan N C, Orlov D M, PazSoldan C and Yu Q 2020 Phys. Rev. Lett. 125 045001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|