Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075212    DOI: 10.1088/1674-1056/acd369
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Stability impacts from the current and pressure profile modifications within finite sized island

Yuxiang Sun(孙宇翔) and Di Hu(胡地)
School of Physics, Beihang University, Beijing 100191, China
Abstract  The stability (or instability) of finite sized magnetic island could play a significant role in disruption avoidance or disruption mitigation dynamics. Especially, various current and pressure profile modifications, such as the current drive and heating caused by electron cyclotron wave, or the radiative cooling and current expulsion caused by the shattered pellet injection could be applied within the island to modify its stability, thus changing the ensuing dynamics. In this study, we calculate the mode structure modification caused by such profile changes within the island using the perturbed equilibrium approach, thus obtain the change of stability criterion $\varDelta$' and assess the corresponding quasi-linear island stability. The positive helical current perturbation is found to always stabilize the island, while the negative one is found to do the opposite, in agreement with previous results. The pressure bump or hole within the island has a more complicated stability impact. In the small island regime, its contribution is monotonic, with pressure bump that tends to stabilize the island while pressure hole destabilizes it. This effect is relatively weak, though, due to the cancellation of the pressure term's odd parity contribution in the second derivatives of the mode structure. In the large island regime, such cancellation is broken due to the island asymmetry, and the pressure contribution to stability is manifested, which is non-monotonic. The stability analysis in this paper helps to more accurately clarify the expected island response in the presence of profile modifications caused by disruption avoidance or mitigation systems.
Keywords:  tokamak      magnetic island      tearing mode      magneto-hydrodynamic (MHD) instability  
Received:  30 December 2022      Revised:  05 May 2023      Accepted manuscript online:  09 May 2023
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.-s (Magnetic confinement and equilibrium)  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Project supported by the National MCF Energy Research and Development Program of China (Grant No. 2019YFE03010001) and the National Natural Science Foundation of China (Grant No. 11905004).
Corresponding Authors:  Di Hu     E-mail:  hudi2@buaa.edu.cn

Cite this article: 

Yuxiang Sun(孙宇翔) and Di Hu(胡地) Stability impacts from the current and pressure profile modifications within finite sized island 2023 Chin. Phys. B 32 075212

[1] Lehnen M, Aleynikova K, Aleynikov P B, et al. 2015 J. Nucl. Mater. 463 39
[2] Fil A, Nardon E, Hoelzl M, et al. 2015 Phys. Plasmas 22 062509
[3] Zohm H, Gantenbein G, Giruzzi G, et al. 1999 Nucl. Fusion 39 577
[4] Giruzzi G and Zabiego M 2001 Fusion Eng. Des. 53 43
[5] Tang W K, Wang Z X, Wei L, et al. 2020 Nucl. Fusion 60 026015
[6] Zhang Y, Wang X J, Zhang X D, et al. 2021 Nucl. Fusion 61 096028
[7] Shiraki D, Commaux N, Baylor L R, et al. 2018 Nucl. Fusion 58 056006
[8] Li Y, Chen Z Y, Wei Y N, et al. 2018 Rev. Sci. Instrum. 89 10K116
[9] Xu H B, Nie L, Zhu G L, et al. 2018 Fusion Sci. Technol. 75 98
[10] Baylor L R, Meitner S J, Gebhart T E, et al. 2019 Nucl. Fusion 59 066008
[11] Raman R, Sweeney R, Moyer R A, et al. 2020 Nucl. Fusion 60 036014
[12] Sweeney R, Baylor L, Eidietis N W, et al. 2020 Nucl. Fusion 61 066040
[13] Park S, Lee K, Baylor L R, et al. 2020 Fusion Eng. Des. 154 111535
[14] Sheikh U A, Shiraki D, Sweeney R, et al. 2021 Nucl. Fusion 61 126043
[15] Park S, Lee K, Lee H, et al. 2021 Fusion Eng. Des. 164 112200
[16] Jachmich S, Kruezi U, Lehnen M, et al. 2022 Nucl. Fusion 62 026012
[17] Jang J, Kim J, Kim J, et al. 2022 Fusion Eng. Des. 180 113172
[18] Pautasso G, Zhang Y, Reiter B, et al. 2011 Nucl. Fusion 51 103009
[19] Lehnen M, Alonso A, Arnoux G, et al. 2011 Nucl. Fusion 51 123010
[20] Hollmann E M, Arnoux G, Commaux N, et al. 2011 J. Nucl. Mater. 415 S27
[21] Reux C, Plyusnin V, Alper B, et al. 2015 J. Nucl. Mater. 463 143
[22] Duan X R, Liu Y, Xu M, et al. 2017 Nucl. Fusion 57 102013
[23] Chen D L, Shen B, Granetz R S, et al. 2018 Nucl. Fusion 58 036003
[24] Ding Y H, Chen Z Y, Chen Z P, et al. 2018 Plasma Sci. Technol. 20 125101
[25] Hollmann E M, Parks P B, Shiraki D, et al. 2019 Phys. Rev. Lett. 122 065001
[26] Izzo V A 2020 Nucl. Fusion 60 066023
[27] Nardon E, Fil A, Hoelzl M, et al. 2016 Plasma Phys. Control. Fusion 59 014006
[28] Hu D, Nardon E, Lehnen M, et al. 2018 Nucl. Fusion 58 126025
[29] Kim C C, Liu Y, Parks P B, et al. 2019 Phys. Plasmas 26 042510
[30] Ferraro N M, Lyons B C, Kim C C, Liu Y Q and Jardin S C 2019 Nucl. Fusion 59 016001
[31] Hoelzl M, Hu D, Nardon E and Huijsmans G T A 2020 Phys. Plasmas 27 022510
[32] Nardon E, Hu D, Hoelzl M and Bonfiglio D 2020 Nucl. Fusion 60 126040
[33] Zafar A, Zhu P, Ali A, Zeng S Y and Li H L 2021 Plasma Sci. Technol. 23 075103
[34] Hu D, Nardon E, Hoelzl M, et al. 2021 Nucl. Fusion 61 026015
[35] Zeng S Y, Zhu P, Izzo V A, Li H L and Jiang Z H 2021 Nucl. Fusion 62 026015
[36] Hu D and Zakharov L E 2015 J. Plasma Phys. 81 515810602
[37] Liu Y, Akcay C, Lao L L and Sun X 2022 Nucl. Fusion 62 126067
[38] Lao L L, Kruger S, Akcay C, et al. 2022 Plasma Phys. Control. Fusion 64 074001
[39] Zakharov L E 1978 Nucl. Fusion 18 335
[40] White R B, Gates D A and Brennan D P 2015 Phys. Plasmas 22 022514
[41] Zakharov L E and Shafranov V D 1986 Reviews of plasma physics (New York: Consultants Bureau) p. 153
[42] Yu Q, Günter S, Lackner K, Gude A and Maraschek M 2000 Nucl. Fusion 40 2031
[43] Rutherford P H 1973 Phys. Fluids 16 1903
[44] Kotschenreuther M, Hazeltine R D and Morrison R J 1985 Phys. Fluids 28 294
[45] Wesson J, Campbel D J, Connor J W, et al. 2011 Tokamaks, 4th edn.(New York: Oxford) p. 152
[46] Glasser A H, Greene J M and Johnson J L 1975 Phys. Fluids 18 875
[47] Kikuchi M and Azumi M 1995 Plasma Phys. Control. Fusion 37 1215
[48] Hornsby W A, Peeters A G, Snodin A P, et al. 2010 Phys. Plasmas 17 092301
[1] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[2] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[3] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[4] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[5] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[6] Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma
Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[7] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[8] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[11] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[12] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[13] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[14] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[15] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
No Suggested Reading articles found!