Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 045204    DOI: 10.1088/1674-1056/ad1e68
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Simulation of deuterium pellet ablation and deposition in the EAST tokamak with HPI2 code

Da-Zheng Li(李大正)1, Jie Zhang(张洁)2,†, Ji-Lei Hou(侯吉磊)3, Mao Li(李懋)1, and Ji-Zhong Sun(孙继忠)1,‡
1 Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Department of Plasma Physics and Fusion Engineering, University of Science and Technology of China, Hefei 230026, China;
3 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Pellet injection is a primary method for fueling the plasma in magnetic confinement devices. For that goal the knowledges of pellet ablation and deposition profiles are critical. In the present study, the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak. Pellet ablation and deposition profiles were evaluated for various pellet injection locations, with the aim at optimizing the pellet injection to obtain a deep fueling depth. In this study, we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes. The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles: 0°, 45°, and 60°. The pellet injection on the high field side (HFS) can achieve a more ideal deposition depth than on the low field side (LFS). Among these angles, horizontal injection on the middle plane is relatively better on either the HFS or the LFS. When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS, it can achieve a similar deposition depth to the one of its corresponding side. When the pre-cooling effect is taken into account, the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS. The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.
Keywords:  pellet injection      pellet ablation      HPI2      pellet deposition  
Received:  09 November 2023      Revised:  27 December 2023      Accepted manuscript online:  15 January 2024
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.65.-y (Plasma simulation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12205196 and 12275040) and the National Key Research and Development Program of China (Grant No. 2022YFE03090003).
Corresponding Authors:  Jie Zhang, Ji-Zhong Sun     E-mail:  jiez111@ustc.edu.cn;jsun@dlut.edu.cn

Cite this article: 

Da-Zheng Li(李大正), Jie Zhang(张洁), Ji-Lei Hou(侯吉磊), Mao Li(李懋), and Ji-Zhong Sun(孙继忠) Simulation of deuterium pellet ablation and deposition in the EAST tokamak with HPI2 code 2024 Chin. Phys. B 33 045204

[1] Kukushkin A S, Polevoi A R, Pacher H D, Pacher G W and Pitts R A 2011 J. Nucl. Mater. 415 S497
[2] Wu X, Li H, Wang Z, Feng H and Zhou Y 2017 Chin. Phys. B 26 065201
[3] Parail V, Belo P, Boerner P, Bonnin X, Corrigan G, Coster D, Ferreira J, Foster A, Garzotti L, Hogeweij G M D, Houlberg W, Imbeaux F, Johner J, Kochl F, Kotov V, Lauro-Taroni L, Litaudon X, Lonnroth J, Pereverzev G, Peysson Y, Saibene G, Sartori R, Schneider M, Sips G, Strand P, Tardini G, Valovic M, Wiesen S, Wischmeier M and Zagorski R 2009 Nucl. Fusion 49 075030
[4] McCarthy K J, Panadero N, Combs S K, Tamura N, Ascasibar E, Calvo M, Chmyga A, Estrada T, Fontdecaba J M, Garcia R, Hernández Sánchez J, Khabanov P, Liners M, Melnikov A V, Pastor I and Rojo B 2019 Plasma Phys. Control. Fusion 61 014013
[5] Milora S L, Houlberg W A, Lengyel L L and Mertens V 1995 Nucl. Fusion 35 657
[6] Parks P B and Baylor L R 2005 Phys. Rev. Lett. 94 125002
[7] Li M, Sun J, Wang Y and Xia T 2021 Nucl. Mater. Energy 26 100888
[8] Baylor L R, Jernigan T C, Parks P B, Antar G, Brooks N H, Combs S K, Fehling D T, Foust C R, Houlberg W A and Schmidt G L 2007 Nucl. Fusion 47 1598
[9] Futatani S, Huijsmans G, Loarte A, Baylor L R, Commaux N, Jernigan T C, Fenstermacher M E, Lasnier C, Osborne T H and Pegourié B 2014 Nucl. Fusion 54 073008
[10] Lang P T, Nakano T, Davis S, Matsunaga G, Pégourié B, Ploeckl B and Treuterer W 2019 Fusion Eng. Des. 146 91
[11] Xu H B, Zhu G L, Liu D Q, Vinyar I, Wang M J and Lukin A 2012 Fusion Sci. Technol. 62 316
[12] Pégourié B and Géraud A 2009 Fusion Sci. Technol. 56 1318
[13] Reksoatmodjo R, Mordijck S, Hughes J W, Lore J D and Bonnin X 2021 Nucl. Mater. Energy 27 100971
[14] Hou J, Hu J, Chen Y, Wang Y, Zang Q, Xu J, Liu H, Tritz K, Gilson E, Yuan X, Sun Z, Maingi R, Zhao H and Li J 2019 Fusion Eng. Des. 145 79
[15] Chen W T, Sun J Z, Gao F, Peng L and Wang D Z 2022 Chin. Phys. B 31 075204
[16] Li C Z, Hu J S, Chen Y, Vinyar I V, Li J G and Lukin Y 2014 Fusion Eng. Des. 89 99
[17] Hou J, Chen Y, Zuo G, Hu J, Mao S, Yuan X, Huang J, Wu M, Xu L, Zhao H, Yuan J, Wang S, Liu H, Meng L, Shi T, Li P and Li J 2022 Plasma Phys. Control. Fusion 64 055010
[18] Parks P B and Turnbull R J 1978 Phys. Fluids 21 1735
[19] Pégourié B, Waller V, Dumont R J, Eriksson L G, Garzotti L, Géraud A and Imbeaux F 2005 Plasma Phys. Control. Fusion 47 17
[20] Gao F, Sun J, Sun Z, Zuo G, Hu J, Loarte A, Bonnin X, Peng L and Liu J 2020 Nucl. Fusion 60 066022
[21] Sun J, Liu L, Sun Z, Li M, Li N and Wang D 2018 Fusion Eng. Des. 136 834
[22] McClenaghan J, Lao L, Parks P, Wu W, Zhang J and Chan V 2023 Nucl. Fusion 63 036015
[23] Zhang J and Parks P 2020 Nucl. Fusion 60 066027
[24] Zhang J, McClenaghan J, Parks P, Lao L and Wu W 2022 Nucl. Fusion 62 086012
[25] Houlberg W A and Attenberger S E 1988 Nucl. Fusion 28 595
[26] Garzotti L, Pégourié B, Géraud A, Frigione D and Baylor L R 1997 Nucl. Fusion 37 1167
[27] Artaud J F, Basiuk V, Imbeaux F, Schneider M, Garcia J, Giruzzi G, Huynh P, Aniel T, Albajar F, Ané J M, Bécoulet A, Bourdelle C, Casati A, Colas L, Decker J, Dumont R, Eriksson L G, Garbet X, Guirlet R, Hertout P, Hoang G T, Houlberg W, Huysmans G, Joffrin E, Kim S H, Köchl F, Lister J, Litaudon X, Maget P, Masset R, Pégourié B, Peysson Y, Thomas P, Tsitrone E and Turco F 2010 Nucl. Fusion 50 043001
[28] Kalupin D, Ivanova-Stanik I, Voitsekhovitch I, Ferreira J, Coster D, Alves L L, Aniel T, Artaud J F, Basiuk V, Bizarro J P S, Coelho R, Czarnecka A, Huynh P, Figueiredo A, Garcia J, Garzotti L, Imbeaux F, Köchl F, Nave M F, Pereverzev G, Sauter O, Scott B D, Stankiewicz R and Strand P 2013 Nucl. Fusion 53 123007
[29] Geulin E and Pégourié B 2022 Plasma Fusion Res. 17 2102101
[30] Pégourié B and Dubois M A 1989 Nucl. Fusion 29 745
[31] Pégourié B and Picchiottino J M 1996 Phys. Plasmas 3 4594
[32] Pégourié B, Waller V, Nehme H, Garzotti L and Géraud A 2007 Nucl. Fusion 47 44
[33] Köchl F, Pegourie B, Matsuyama A, Nehme H, Waller V, Frigione D, Garzotti L, Kamelander G, Parail V and JET EFDA 2012 Modelling of Pellet Particle Ablation and Deposition:The Hydrogen Pellet Injection code HPI2 EUROfusion Prepr EFDA-JET-PR(12)57
[34] Parks P B, Sessions W D and Baylor L R 2000 Phys. Plasmas 7 1968
[35] Pégourié B 2007 Plasma Phys. Control. Fusion 49 R87
[36] Rozhansky V, Senichenkov I, Veselova I and Schneider R 2004 Plasma Phys. Control. Fusion 46 575
[37] Hu J S, Sun Z, Li C Z, Zhen X W, Li J G, Guo H Y, Li J H, Wang L, Gan K F, Chen Y, Ren J, Zuo G Z, Yao X J, Hu L Q, Gong X Z, Wan B N, Zou X L, Mansfield D K, Liang Y F and Vinyar I 2015 J. Nucl. Mater. 463 718
[38] Lang P T, Büchl K, Kaufmann M, Lang R S, Mertens V, Müller H W and Neuhauser J 1997 Phys. Rev. Lett. 79 1487
[39] Hou J, Chen Y, Yuan X, Limeng M, Sun Z, Zuo G and Hu J 2020 Fusion Eng. Des. 153 111482
[40] Hou J, Chen Y, Vinyar I, Yuan X and Hu J 2018 Fusion Eng. Des. 130 69
[41] Müller H W, Dux R, Kaufmann M, Lang P T, Lorenz A, Maraschek M, Mertens V and Neuhauser J 2002 Nucl. Fusion 42 301
[1] Magnetic diagnostics layout design for CFETR plasma equilibrium reconstruction
Qingze Yu(于庆泽), Yao Huang(黄耀), Zhengping Luo(罗正平), Yuehang Wang(汪悦航), Zijie Liu(刘自结), Wangyi Rui(芮望颐), Kai Wu(吴凯), Bingjia Xiao(肖炳甲), and Jiangang Li(李建刚). Chin. Phys. B, 2024, 33(4): 045201.
[2] Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model
Wen Wang(王文), Tao Xu(徐涛), Yi Zhang(张仪), and the J-TEXT team. Chin. Phys. B, 2024, 33(4): 045202.
[3] Long radial coherence of electron temperature fluctuations in non-local transport in HL-2A plasmas
Zhongbing Shi(石中兵), Kairui Fang(方凯锐), Jingchun Li(李景春), Xiaolan Zou(邹晓岚), Zhaoyang Lu(卢兆旸), Jie Wen(闻杰), Zhanhui Wang(王占辉), Xuantong Ding(丁玄同), Wei Chen(陈伟), Zengchen Yang(杨曾辰), Min Jiang(蒋敏), Xiaoquan Ji(季小全), Ruihai Tong(佟瑞海), Yonggao Li(李永高), Peiwan Shi(施陪万), Wulyv Zhong(钟武律), and Min Xu(许敏). Chin. Phys. B, 2024, 33(2): 025202.
[4] Numerical study of alpha particle loss with toroidal field ripple based on CFETR steady-state scenario
Niuqi Li(李钮琦), Yingfeng Xu(徐颖峰), Fangchuan Zhong(钟方川), and Debing Zhang(张德兵). Chin. Phys. B, 2024, 33(1): 015202.
[5] Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma
Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[6] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[7] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[8] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[9] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[10] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[11] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[12] Stability impacts from the current and pressure profile modifications within finite sized island
Yuxiang Sun(孙宇翔) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075212.
[13] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[14] Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team. Chin. Phys. B, 2022, 31(10): 105203.
[15] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
No Suggested Reading articles found!