Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 015202    DOI: 10.1088/1674-1056/ad03de
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical study of alpha particle loss with toroidal field ripple based on CFETR steady-state scenario

Niuqi Li(李钮琦)1,2, Yingfeng Xu(徐颖峰)1,2,†, Fangchuan Zhong(钟方川)1,2, and Debing Zhang(张德兵)3
1 College of Science, Donghua University, Shanghai 201620, China;
2 Member of Magnetic Confinement Fusion Research Center, Ministry of Education, Shanghai 201620, China;
3 Department of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  Effects of plasma equilibrium parameters on the alpha particle loss with the toroidal field ripple based on the CFETR steady-state scenario have been numerically investigated by the orbit-following code GYCAVA. It is found that alpha particle losses decrease and loss regions become narrower with the plasma current increasing or with the magnetic field decreasing. It is because the ripple stochastic transport and the ripple well loss of alpha particle are reduced with the safety factor decreasing. Decrease of the plasma density and temperature can reduce alpha particle losses due to enhancement of the slowing-down effect. The direction of the toroidal magnetic field can significantly affect heat loads induced by lost alpha particle. The vertical asymmetry of heat loads induced by the clockwise and counter-clockwise toroidal magnetic fields are due to the fact that the ripple distribution is asymmetric about the mid-plane, which can be explained by the typical orbits of alpha particle. The maximal heat load of alpha particle for the clockwise toroidal magnetic field is much smaller than that for the counter-clockwise one.
Keywords:  alpha particle loss      ripple      orbit-following      tokamak  
Received:  06 August 2023      Revised:  30 September 2023      Accepted manuscript online:  17 October 2023
PACS:  52.65.-y (Plasma simulation)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
  96.50.Vg (Energetic particles)  
Fund: The authors are very grateful for the help of the CFETR team. Project supported by the National Natural Science Foundation of China (Grant Nos. 12175034 and 12005063), the National Key Research and Development Program of China (Grant No. 2019YFE03030001), and the Fundamental Research Funds for the Central Universities (Grant No. 2232022G-10).
Corresponding Authors:  Yingfeng Xu     E-mail:  xuyingfeng@dhu.edu.cn

Cite this article: 

Niuqi Li(李钮琦), Yingfeng Xu(徐颖峰), Fangchuan Zhong(钟方川), and Debing Zhang(张德兵) Numerical study of alpha particle loss with toroidal field ripple based on CFETR steady-state scenario 2024 Chin. Phys. B 33 015202

[1] Tobita K, Nakayama T, Konovalov S V, et al. 2003 Plasma Phys. Control. Fusion 45 133
[2] Shinohara K, Kurki-Suonio T, Spong D, et al. 2011 Nucl. Fusion 51 063028
[3] Shinohara K, Tani K, Oikawa T, et al. 2012 Nucl. Fusion 52 094008
[4] White R B and Mynick H E 1989 Phys. Fluids B 1 980
[5] Darrow D S, Zweben S J, Batha S, et al. 1996 Phys. Plasmas 3 1875
[6] Budny R V, Bell M G, Janos A C, et al. 1995 Nucl. Fusion 35 1497
[7] Redi M H, Zarnstorff M C, White R B, et al. 1995 Nucl. Fusion 35 1191
[8] Duong H H, Fisher R K, Medley S S, et al. 1997 Nucl. Fusion 37 271
[9] Zweben S J, Budny R V, Darrow D S, et al. 2000 Nucl. Fusion 40 91
[10] Hao B L, Wu B, Wang J F, et al. 2015 J. Fusion Energ. 34 659
[11] Hao B L, Chen W, Cai H S, et al. 2020 Sci. Sin-Phys. Mech. Astron. 50 065201
[12] Zhao R, Wang Z X, Wang F, et al. 2020 Plasma Phys. Control. Fusion 62 115001
[13] Xu Y F, Zhang D B, Chen J L, et al. 2022 Plasma Sci. Technol. 24 105101
[14] Pfefferlé D, Cooper W A, Fasoli A, et al. 2016 Nucl. Fusion 56 112002
[15] Wan B N, Ding S Y, Qian J P, et al. 2014 IEEE Trans. Plasma Sci. 42 495
[16] Song Y T, Wu S T, Li J G, et al. 2014 IEEE Trans. Plasma Sci. 42 503
[17] Chan V S, Costley A E, Wan B N, et al. 2015 Nucl. Fusion 55 023017
[18] Wan Y X, Li J G, Liu Y, et al. 2017 Nucl. Fusion 57 102009
[19] Zhuang G, Li G Q, Li J, et al. 2019 Nucl. Fusion 59 112010
[20] Gao X, Wan B N, Song Y T, et al. 2019 Sci. Sin-Phys. Mech. Astron. 49 045202
[21] Wang F, Zhao R, Wang Z X, et al. 2021 Chin. Phys. Lett. 38 055201
[22] Xu Y F, Guo W F, Ye L, et al. 2018 Phys. Plasmas 25 012502
[23] Xu Y F, Guo W F, Hu Y J, et al. 2019 Comput. Phys. Commun. 244 40
[24] Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421
[25] Hu Y J, Xu Y F, Hao B L, et al. 2021 Phys. Plasmas 28 122502
[26] Xu Y F, Li L, Hu Y J, et al. 2020 Nucl. Fusion 60 086013
[27] Xu Y F, Hu Y J, Zhang X D, et al. 2021 Plasma Sci. Technol. 23 095102
[28] Zhou C X, Chen J L, Chan V, et al. 2022 Phys. Plasmas 29 022505
[29] Chen J L, Chan V S, Jian X, et al. 2021 Nucl. Fusion 61 046002
[30] Huba J D 2011 NRL Plasma Formulary (Washington DC:Naval Research Laboratory)
[31] Ye L, Guo W F, Xiao X T, et al. 2014 Phys. Plasmas 21 122508
[32] Goldston R J, White R B and Boozer A H 1981 Phys. Rev. Lett. 47 647
[1] Long radial coherence of electron temperature fluctuations in non-local transport in HL-2A plasmas
Zhongbing Shi(石中兵), Kairui Fang(方凯锐), Jingchun Li(李景春), Xiaolan Zou(邹晓岚), Zhaoyang Lu(卢兆旸), Jie Wen(闻杰), Zhanhui Wang(王占辉), Xuantong Ding(丁玄同), Wei Chen(陈伟), Zengchen Yang(杨曾辰), Min Jiang(蒋敏), Xiaoquan Ji(季小全), Ruihai Tong(佟瑞海), Yonggao Li(李永高), Peiwan Shi(施陪万), Wulyv Zhong(钟武律), and Min Xu(许敏). Chin. Phys. B, 2024, 33(2): 025202.
[2] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[3] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[4] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[5] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[6] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[7] Stability impacts from the current and pressure profile modifications within finite sized island
Yuxiang Sun(孙宇翔) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075212.
[8] Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma
Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team. Chin. Phys. B, 2023, 32(7): 075205.
[9] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[10] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[11] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[12] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[13] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[14] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[15] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
No Suggested Reading articles found!