Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 075205    DOI: 10.1088/1674-1056/acc7fb
Special Issue: SPECIAL TOPIC — Plasma disruption
SPECIAL TOPIC—Plasma disruption Prev   Next  

Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma

Feng Li(李峰)1, Zhong-Yong Chen(陈忠勇)1,†, Sheng-Guo Xia(夏胜国)2, Wei Yan(严伟)1, Wei-Kang Zhang(张维康)1, Jun-Hui Tang(唐俊辉)2, You Li(李由)1, Yu Zhong(钟昱)1, Jian-Gang Fang(方建港)1, Fan-Xi Liu(刘凡溪)1, Gui-Nan Zou(邹癸南)1, Yin-Long Yu(喻寅龙)1, Zi-Sen Nie(聂子森)1, Zhong-He Jiang(江中和)1, Neng-Chao Wang(王能超)1, Yong-Hua Ding(丁永华)1, Yuan Pan(潘垣)1, and the J-TEXT team1,‡
1 International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
2 Key Laboratory of Pulsed Power Technology Ministry of Education Huazhong University of Science and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Disruption remains to be a serious threat to large tokamaks like the International Thermonuclear Experimental Reactor (ITER). The injection speed of disruption mitigation systems (DMS) driven by high pressure gas is limited by the sound speed of the propellant gas. When extrapolating to ITER-like tokamaks, long overall reaction duration and shallow penetration depth due to low injection speed make it stricter for plasma control system to predict the impending disruptions. Some disruptions with a short warning time may be unavoidable. Thus, a fast time response and high injection speed DMS is essential for large scale devices. The electromagnetic pellet-injection (EMPI) system is a novel massive material injection system aiming to provide rapid and effective disruption mitigation. Based on the railgun concept, EMPI can accelerate the payload to over 1000 m/s and shorten the overall reaction time to a few milliseconds. To verify the injection ability and stability of the EMPI, the prototype injector EMPI-1 has been designed and assembled. The preliminary test has been carried out using a 5.9 g armature to propel a dummy pellet and the results suggest that the EMPI configuration has a great potential to be the DMS of the large scale fusion devices.
Keywords:  tokamak      disruption mitigation system      electromagnetic pellet-injection (EMPI)  
Received:  21 December 2022      Revised:  16 March 2023      Accepted manuscript online:  28 March 2023
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
Fund: The authors are very grateful for the help of the J-TEXT team. Project supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China (Grant No. 2019YFE03010004) and the National Natural Science Foundation of China (Grant Nos. 12175078, 11905077, and 51821005).
Corresponding Authors:  Zhong-Yong Chen     E-mail:  zychen@mail.hust.edu.cn

Cite this article: 

Feng Li(李峰), Zhong-Yong Chen(陈忠勇), Sheng-Guo Xia(夏胜国), Wei Yan(严伟), Wei-Kang Zhang(张维康), Jun-Hui Tang(唐俊辉), You Li(李由), Yu Zhong(钟昱), Jian-Gang Fang(方建港), Fan-Xi Liu(刘凡溪),Gui-Nan Zou(邹癸南), Yin-Long Yu(喻寅龙), Zi-Sen Nie(聂子森), Zhong-He Jiang(江中和),Neng-Chao Wang(王能超), Yong-Hua Ding(丁永华), Yuan Pan(潘垣), and the J-TEXT team Development of electromagnetic pellet injector for disruption mitigation of tokamak plasma 2023 Chin. Phys. B 32 075205

[1] Lehnen M, Aleynikova K, Aleynikov P B, Campbell D J, Drewelow P, Eidietis N W, Gasparyan Y, Granetz R S, Gribov Y, Hartmann N, Hollmann E M, Izzo V A, Jachmich S, Kim S H, Kočan M, Koslowski H R, Kovalenko D, Kruezi U, Loarte A, Maruyama S, Matthews G F, Parks P B, Pautasso G, Pitts R A, Reux C, Riccardo V, Roccella R, Snipes J A, Thornton A J and de Vries P C 2015 J. Nucl. Mater. 463 39
[2] Lehnen M, Jachmich S and Kruezi U 2020 IAEA Technical Meeting on Plasma Disruptions and their Mitigation, July 20-23, 2020, Vienna, Austria
[3] Hollmann E M, Aleynikov P B, Fülöp T, Humphreys D A, Izzo V A, Lehnen M, Lukash V E, Papp G, Pautasso G, Saint-Laurent F and Snipes J A 2015 Phys. Plasmas 22 021802
[4] Lehnen M, Alonso A, Arnoux G, Baumgarten N, Bozhenkov S A, Brezinsek S, Brix M, Eich T, Gerasimov S N, Huber A, Jachmich S, Kruezi U, Morgan P D, Plyusnin V V, Reux C, Riccardo V, Sergienko G and Stamp M F 2011 Nucl. Fusion 51 123010
[5] Bakhtiari M, Kawano Y, Tamai H, Miura Y, Yoshino R and Nishida Y 2002 Nucl. Fusion 42 1197
[6] Lukash V E, Mineev A B and Morozov D K 2007 Nucl. Fusion 47 1476
[7] Commaux N, Baylor L R, Jernigan T C, Hollmann E M, Parks P B, Humphreys D A, Wesley J C and Yu J H 2010 Nucl. Fusion 50 112001
[8] Herfindal J L, Shiraki D, Baylor L R, Eidietis N W, Hollmann E M, Lasnier C J and Moyer R A 2019 Nucl. Fusion 59 106034
[9] Vega J, Dormido-Canto S, López J M, Murari A, Ramírez J M, Moreno R, Ruiz M, Alves D and Felton R 2013 Fusion Eng. Des. 88 1228
[10] Hawke R S 1983 J. Vac. Sci. Technol. A 1 969
[11] Combs S K, Meitner S J, Baylor L R, Caughman J, Commaux N, Fehling D T, Foust C R, Jernigan T C, McGill J M, Parks P B and Rasmussen D A 2010 IEEE Trans. Plasma Sci. 38 400
[12] Chen C, Lan T, Xiao C, Zhuang G, Kong D, Zhang S B, Zhang S, Ding W, Wu Z, Mao W, Wu J, Xu H, Wu J, Zu Y, Zhang D, Wei Z, Wen X, Zhou C, Liu A, Xie J, Li H and Liu W 2022 Plasma Sci. Technol. 24 045102
[13] Raman R, Lay W S, Jarboe T, Menard J and Ono M 2018 Nucl. Fusion 59 016021
[14] Raman R, Lunsford R, Clauser C F, Jardin S C, Menard J E and Ono M 2021 Nucl. Fusion 61 126034
[15] Raman R, Jarboe T R, Menard J E, Gerhardt S P, Ono M, Baylor L and Lay W S 2015 Fusion Sci. Technol. 68 797
[16] Zhongyong C, Weikang Z, Junhui T, Feng L and Shengguo X 2022 Trans. China Electrotech. Soc. 037 5056
[1] Recent progress on deep learning-based disruption prediction algorithm in HL-2A tokamak
Zongyu Yang(杨宗谕), Yuhang Liu(刘宇航), Xiaobo Zhu(朱晓博), Zhengwei Chen(陈正威), Fan Xia(夏凡), Wulyu Zhong(钟武律), Zhe Gao(高喆), Yipo Zhang(张轶泼), and Yi Liu(刘仪). Chin. Phys. B, 2023, 32(7): 075202.
[2] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[3] Effect of tearing modes on the confinement of runaway electrons in Experimental Advanced Superconducting Tokamak
Rui-Jie Zhou(周瑞杰). Chin. Phys. B, 2023, 32(7): 075204.
[4] Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
Sheng-Bo Zhao(赵胜波), Hui-Dong Zhuang(庄会东), Jing-Sheng Yuan(元京升), De-Hao Zhang(张德皓),Li Li(黎立), Long Zeng(曾龙), Da-Long Chen(陈大龙), Song-Tao Mao(毛松涛), Ming Huang(黄明),Gui-Zhong Zuo(左桂忠), and Jian-Sheng Hu(胡建生). Chin. Phys. B, 2023, 32(7): 075207.
[5] Drift surface solver for runaway electron current dominant equilibria during the current quench
Lu Yuan(袁露) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075208.
[6] Stability impacts from the current and pressure profile modifications within finite sized island
Yuxiang Sun(孙宇翔) and Di Hu(胡地). Chin. Phys. B, 2023, 32(7): 075212.
[7] Runaway electron dynamics in Experimental Advanced Superconducting Tokamak helium plasmas
Chen-Xi Luo(罗晨曦), Long Zeng(曾龙), Xiang Zhu(朱翔), Tian Tang(唐天), Zhi-Yong Qiu(仇志勇),Shi-Yao Lin(林士耀), Tao Zhang(张涛), Hai-Qing Liu(刘海庆), Tong-Hui Shi(石同辉), Bin Zhang(张斌),Rui Ding(丁锐), Wei Gao(高伟), Min-Rui Wang(王敏锐), Wei Gao(高伟), Ang Ti(提昂), Hai-Lin Zhao(赵海林), Tian-Fu Zhou(周天富), Jin-Ping Qian(钱金平), You-Wen Sun(孙有文), Bo Lv(吕波), Qing Zang(臧庆),Yin-Xian Jie(揭银先), Yun-Feng Liang(梁云峰), and Xiang Gao(高翔). Chin. Phys. B, 2023, 32(7): 075209.
[8] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[11] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[12] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[13] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[14] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[15] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
No Suggested Reading articles found!