PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Effects of counter-current driven by electron cyclotron waves on neoclassical tearing mode suppression |
Qin Gao(高钦) and Ping-Wei Zheng(郑平卫)1 |
1 School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China; 2 Demonstration Base for International Science and Technology Cooperation on Nuclear Energy and Nuclear Safety, University of South China, Hengyang 421001, China |
|
|
Abstract Through theoretical analysis, we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode (NTM). The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions. Consistent with the reported experimental results, numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface. Under some circumstances, the Ohkawa mechanism dominated current drive (OKCD) by electron cyclotron waves can concurrently create both co-current and counter-current. In this instance, the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation. The result is marginally less than when taking co-current alone into consideration. As a result, to suppress NTM using OKCD, one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface. The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
|
Received: 13 October 2023
Revised: 17 December 2023
Accepted manuscript online: 30 January 2024
|
PACS:
|
52.35.Hr
|
(Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))
|
|
52.55.Fa
|
(Tokamaks, spherical tokamaks)
|
|
52.55.Wq
|
(Current drive; helicity injection)
|
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFE03070000 and 2022YFE03070003), the National Natural Science Foundation of China (Grant Nos. 12375220 and 12075114), the Hunan Provincial Natural Science Foundation (Grant No. 2021JJ30569), the Doctoral Initiation Fund Project of University of South China (Grant No. 190XQD114), the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base (Grant No. 2018WK4009), and the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research (Grant No. 2018KJ108). |
Corresponding Authors:
Ping-Wei Zheng
E-mail: pwzheng@usc.edu.cn
|
Cite this article:
Qin Gao(高钦) and Ping-Wei Zheng(郑平卫) Effects of counter-current driven by electron cyclotron waves on neoclassical tearing mode suppression 2024 Chin. Phys. B 33 055202
|
[1] Prater R 2004 Phys. Plasmas 11 2349 [2] Igochine V 2015 Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas (Berlin: Springer Berlin Heidelberg) pp. 83-85 [3] Haye R J L 2006 Phys. Plasmas 13 055501 [4] Pietrzyk Z A, Angioni C, Behn R, Coda S, Goodman T P, Henderson M A, Hofmann F and Sauter O 2001 Phys. Rev. Lett 86 1530 [5] Petty C C, La Haye R J, Luce T C, Humphreys D A, Hyatt A W, Lohr J, Prater R, Strait E J and Wade M R 2004 Nucl. Fusion 44 243 [6] Prater R, La Haye R J, Luce T C, Petty C C, Strait E J, Ferron J R, Humphreys D A, Isayama A, Lohr J, Nagasaki K, Politzer P A, Wade M R and Welander A S 2007 Nucl. Fusion 47 371 [7] Kolemen E, Welander A S, La Haye R J, Eidietis N W, Humphreys D A, Lohr J, Noraky V, Penaflor B G, Prater R and Turco F 2014 Nucl. Fusion 54 073020 [8] Isayama A, Matsunaga G, Kobayashi T, Moriyama1 S, Oyama N, Sakamoto1 Y, Suzuki T, Urano H, Hayashi N, Kamada Y, Ozeki T, Hirano Y, Urso L, Zohm H, Maraschek M, Hobirk J, Nagasaki K and the JT-60 team 2009 Nucl. Fusion 49 055006 [9] Maraschek M, Gantenbein G, Yu Q, Zohm H, Günter S, Leuterer F and Manini F 2007 Phys. Rev. Lett 98 025005 [10] Warrick C D, Buttery R J, Cunningham G, Fielding S J, Hender T C, Lloyd B, Morris A W, O’Brien M R, Pinfold T, Stammers K, Valovic M, Walsh M, Wilson H R, COMPASS-D and RF teams 2000 Phys. Rev. Lett 85 574 [11] Reiman A H and Fisch N J 2018 Phys. Rev. Lett 121 225001 [12] Yu Q, Günter S and Lackner K 2018 Nucl. Fusion 58 054003 [13] Wang Z X, Tang W K and Wei L 2022 Plasma Sci. Technol 24 033001 [14] Tang W K, Wang Z X, Wei L, Wang J L and Lu S S 2020 Nucl. Fusion 60 026015 [15] Liu T, Wang Z X, Wei L and Wang J L 2022 Nucl. Fusion 62 056018 [16] Poli E, Angioni.C, Casson F J, Farina D, Figini L, Goodman T P, Maj O, Sauter O, Weber H, Zohm H, Saibene G and Henderson M A 2015 Nucl. Fusion 55 013023 [17] De Lazzari D and Westerhof E 2009 Nucl. Fusion 49 075002 [18] La Haye R J, Ferron J R, Humphreys D A, Luce T C, Petty C C, Prater R, Strait E J and Welander A S 2008 Nucl. Fusion 48 054004 [19] He L H, Zheng P W and Yu T 2023 Nucl. Eng. Technol 55 2941 [20] Kong M, Blanken T C, Felici F, Galperti C, Maljaars E, Sauter O, Vu1 T, Carpanese F, Merle A, Moret J M, Pesamosca F, Poli E, Reich M, Teplukhina A, The TCV Team and The EUROfusion MST Team 2019 Nucl. Fusion 59 076035 [21] Maraschek M 2012 Nucl. Fusion 52 074007 [22] Shi M L, Zheng P W, Yin L, He H L, Hua Q H, Zhong Y J, Deng S and Gong X Y 2022 Plasma Phys. Control. Fusion 64 115013 [23] Park Y S 2008 J. Korean Phys. Soc. 53 1923 [24] Lu S S, Liu Y and Wei L 2020 Vacuum 182 109656 [25] Jenkins, T G, Kruger, S E, Hegna, C C, Schnack, DD and Sovinec C R 2010 Phys. Plasmas 17 012502 [26] Février O, Maget P, L utjens H, Lüciani J F, Decker J, Giruzzi G, Reich M, Beyer P, Lazzaro E, Nowak S and the ASDEX Upgrade team 2016 Plasma Phys. Control. Fusion 58 045015 [27] Wang X J, Yu Q Q, Zhang X D, Zhang Y, Zhu S Z, Wang X G and Wu B 2018 Plasma Phys. Control. Fusion 60 045004 [28] Westerhof E, Blank H J de and Pratt J 2016 Nucl. Fusion 56 036016 [29] Bertelli N, De Lazzari D and Westerhof E 2011 Nucl. Fusion 51 103007 [30] De Lazzari D and Westerhof E 2010 Nucl. Fusion 50 079801 [31] Sautor O, Henderson M A, Ramponi G, Zohm H and Zucca C 2010 Plasma Phys. Control. Fusion 52 025002 [32] La Haye R J, Prater R, Buttery R J, Hayashi N, Isayama A, Maraschek M E, Urso L and Zohm H 2006 Nucl. Fusion 46 451 [33] Li C Y, Zheng P W, Jiang X C, Lu L F, Yin L, He L H, Huang Q H, Zhong Y J and Gong X Y 2022 Nucl. Fusion 62 096027 [34] Zheng P W, Gong X Y, Lu X Q, He L H, Cao J J, Huang Q H and Deng S 2018 Nucl. Fusion 58 036010 [35] Zheng P W, Gong X Y, Lu X Q, Cao J J, He L H, Huang Q H, Deng S, Lin J F and Zhong Y J 2018 Plasma Phys 25 072501 [36] Smirnov A P, Harvey R W and Prater R 2009 World Scientific EC-15 301 [37] Harvey R W and McCoy M G 1992 Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, June 5-18,1992, Montreal, Canada, p. 489 [38] Petrov Y V and Harvey R W 2016 Plasma Phys. Control. Fusion 58 115001 [39] Poli F M, Fredrickson E D, Henderson M A, Kim S H, Bertelli N, Poli E, Farina D and Figini L 2018 Nucl. Fusion 58 016007 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|