Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037301    DOI: 10.1088/1674-1056/ad18aa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2

Zi Wang(王子)1,†, Xin Peng(彭馨)1,†, Shengnan Zhang(张胜男)2, Yahui Su(苏亚慧)1, Shaodong Lai(赖少东)1, Xuan Zhou(周旋)1, Chunxiang Wu(吴春翔)3, Tingyu Zhou(周霆宇)3, Hangdong Wang(王杭栋)4, Jinhu Yang(杨金虎)4, Bin Chen(陈斌)4, Huifei Zhai(翟会飞)1, Quansheng Wu(吴泉生)2,5, Jianhua Du(杜建华)1,‡, Zhiwei Jiao(焦志伟)1,§, and Minghu Fang(方明虎)3,6,¶
1 Department of Physics, China Jiliang University, Hangzhou 310018, China;
2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics, Zhejiang University, Hangzhou 310027, China;
4 Department of Physics, Hangzhou Normal University, Hangzhou 310036, China;
5 University of Chinese Academy of Sciences, Beijing 100049, China;
6 Collaborative Innovation Center of Advanced Microstructure, Nanjing 210093, China
Abstract  Intercalated transition metal dichalcogenides (TMDCs) attract much attention due to their rich properties and potential applications. In this article, we grew successfully high-quality V1/3TaS2 crystals by a vapor transport method. We measured the magnetization, longitudinal resistivity ρxx(T, H), Hall resistivity ρxy(T, H), as well as performed calculations of the electronic band structure. It was found that V1/3TaS2 is an A-type antiferromagnet with the Neel temperature TN = 6.20 K, and exhibits a negative magnetoresistance (MR) near TN. Both band structure calculations and Hall resistivity measurements demonstrated it is a magnetic semimetal.
Keywords:  magnetoresistance      antiferromagnetic semimetal      band structure  
Received:  02 November 2023      Revised:  22 December 2023      Accepted manuscript online:  26 December 2023
PACS:  73.43.Qt (Magnetoresistance)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.50.Ee (Antiferromagnetics)  
  71.55.Ak (Metals, semimetals, and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403202), the National Natural Science Foundation of China (Grant Nos. NSFC-12074335, 11974095, 5177115, 11974095, and 12188101), and the Natural Science Foundation of Shaanxi Province of China (Grant No. 2022JM-028).
Corresponding Authors:  Jianhua Du, Zhiwei Jiao, Minghu Fang     E-mail:  jhdu@cjlu.edu.cn;jiaozw@cjlu.edu.cn;mhfang@zju.edu.cn

Cite this article: 

Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎) Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2 2024 Chin. Phys. B 33 037301

[1] Gong C, Li L, Li Z, et al. 2017 Nature 546 265
[2] Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature 546 270
[3] Deng Y, Yu Y, Song Y, et al. 2018 Nature 563 94
[4] Chen B, Yang J, Wang H, Imai M, Ohta H, Michioka C, Yoshimura K and Fang M 2013 J. Phys. Soc. Jpn. 82 124711
[5] Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov A and Kishine J I 2013 Phys. Rev. Lett. 111 197204
[6] Masaki Y, Aoki R, Togawa Y and Kato Y 2018 Phys. Rev. B 98 100402
[7] Morosan E, Zandbergen H, Li L, Lee M, Checkelsky J, Heinrich M, Siegrist T, Ong N P and Cava R 2007 Phys. Rev. B 75 104401
[8] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[9] Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
[10] Zhao B, Shen D, Zhang Z, Lu P, Hossain M, Li J, Li B and Duan X 2021 Adv. Funct. Mater. 31 2105132
[11] Morosan E, Zandbergen H W, Dennis B S, Bos J W, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[12] Rahman A, Rehman M U, Kiani M, Zhao H, Wang J, Lu Y, Ruan K, Dai R, Wang Z, Zhang L, Wang J and Zhang Z 2022 Phys. Rev. B 105 144413
[13] Kousaka Y, Ogura T, Zhang J, Miao P, Lee S, Torii S, Kamiyama T, Campo J, Inoue K and Akimitsu J 2016 J. Phys.: Conf. Ser. 746 012061
[14] van den Berg J M and Cossee P 1968 Inorganica Chim. Acta 2 143
[15] Nakanishi M, Matsuno Y, Fujii T, Takada J and Yoshimura K 2008 J. Phys. Chem. Solids 69 49
[16] Ghimire N J, Botana A S, Jiang J S, Zhang J, Chen Y S and Mitchell J F 2018 Nat. Commun. 9 3280
[17] Lu K, Sapkota D, Debeer-Schmitt L, Wu Y, Cao H B, Mannella N, Mandrus D, Aczel A A and MacDougall G J 2020 Phys. Rev. Mater. 4 054416
[18] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[19] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Parkin S S and Friend R H 1980 Physica B+C 99 219
[23] Karna S K, Womack F, Chapai R, et al. 2019 Phys. Rev. B 100 184413
[24] Zhou Y, Lou Z, Zhang S, et al. 2020 Phys. Rev. B 102 115145
[25] Chen S, Lou Z, Zhou Y, Chen Q, Xu B, Wu C, Du J, Yang J, Wang H and Fang M 2021 Chin. Phys. Lett. 38 017202
[26] Chen Q, Zhou Y, Xu B, et al. 2021 Chin. Phys. Lett. 38 087501
[27] Chen Q, Lou Z, Zhang S, et al. 2020 Phys. Rev. B 102 165133
[28] Du J, Wang H, Chen Q, et al. 2016 Sci. China Phys. Mech. 59 657406
[29] Du J, Lou Z, Zhang S, et al. 2018 Phys. Rev. B 97 245101
[30] Ali M N, Xiong J, Flynn S, et al. 2014 Nature 514 205
[31] Zhou Q, Rhodes D, Zhang Q, Tang S, Schönemann R and Balicas L 2016 Phys. Rev. B 94 121101
[32] Hu J, Tang Z, Liu J, et al. 2016 Phys. Rev. Lett. 117 016602
[1] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[2] Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才). Chin. Phys. B, 2024, 33(3): 037504.
[3] Band structures of strained kagome lattices
Luting Xu(徐露婷) and Fan Yang(杨帆). Chin. Phys. B, 2024, 33(2): 027101.
[4] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[5] Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions
Xiaoyu Ye(叶晓羽), Xiaojian Zhu(朱小健), Huali Yang(杨华礼), Jipeng Duan(段吉鹏), Cui Sun(孙翠), and Run-Wei Li(李润伟). Chin. Phys. B, 2023, 32(8): 087305.
[6] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[7] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[8] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[9] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[10] Observation of spin-glass behavior in 1111-type magnetic semiconductor (La, Ba)(Zn, Mn)SbO
Xueqin Zhao(赵雪芹), Jinou Dong(董金瓯), Rufei Zhang(张茹菲), Qiaolin Yang(杨巧林), Lingfeng Xie(谢玲凤), Licheng Fu(傅立承), Yilun Gu(顾轶伦), Xun Pan(潘洵), and Fanlong Ning(宁凡龙). Chin. Phys. B, 2023, 32(12): 127502.
[11] Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风). Chin. Phys. B, 2023, 32(10): 107303.
[12] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[13] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[14] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[15] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
No Suggested Reading articles found!