Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037201    DOI: 10.1088/1674-1056/ad0bf1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer

Xiao-Xue Li(李晓雪)1,2,†, Hua Peng(彭华)1, Dong Wang(王栋)2, and Dong Hou(侯栋)2
1 School of Physics and Technology, University of Jinan, Jinan 250022, China;
2 Jinan Institute of Quantum Technology, Jinan 250101, China
Abstract  By using one-dimensional tight-binding model modified to include electron-electric field interaction and electron-electron interaction, we theoretically explore the polarization process of exciton and biexciton in cis-polyacetylene. The dynamical simulation is performed by adopting the non-adiabatic evolution approach. The results show that under the effect of moderate electric field, when the strength of electron-electron interaction is weak, the singlet exciton is stable but its polarization presents obvious oscillation. With the enhancement of interaction, it is dissociated into polaron pairs, the spin-flip of which can be observed through modulating the interaction strength. For the triplet exciton, the strong electron-electron interaction restrains its normal polarization, but it is still stable. In the case of biexciton, the strong electron-electron interaction not only dissociate it, but also flip its charge distribution. The yield of the possible states formed after the dissociation of exciton and biexciton is also calculated.
Keywords:  conjugated polymer      exciton      electron-electron interaction      reverse polarization  
Received:  12 September 2023      Revised:  07 November 2023      Accepted manuscript online:  13 November 2023
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  71.35.-y (Excitons and related phenomena)  
  71.38.-k (Polarons and electron-phonon interactions)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020MA070).
Corresponding Authors:  Xiao-Xue Li     E-mail:  sps_lixx@ujn.edu.cn

Cite this article: 

Xiao-Xue Li(李晓雪), Hua Peng(彭华), Dong Wang(王栋), and Dong Hou(侯栋) Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer 2024 Chin. Phys. B 33 037201

[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend RH, Burns P L and Holmes A B 1990 Nature 347 539
[2] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Santos D A D, Brédas J L, Lögdlund M and Salaneck W R 1999 Nature 397 121
[3] Coakley K M and McGehee M D 2004 Chem. Mater. 16 4533
[4] Cui Y, Yao H F, Hong L, Zhang T, Xu Y, Xian K H, Gao B W, Qin J Z, Zhang J Q, Wei Z X and Hou J H 2019 Adv. Mater. 31 1808356
[5] Sirringhaus H, Tessler N and Friend R H 1998 Science 280 1741
[6] Stutzmann N, Friend R H and Sirringhaus H 2003 Science 299 1881
[7] Sun X, Fu R L, Yonemitsu K and Nasu K 2000 Phys. Rev. Lett. 84 2830
[8] Fu R L, Guo G Y and Sun X 2000 Phys. Rev. B 62 15735
[9] Wang L X, Liu D S, Wei J H, Xie S J and Han S H 2002 J. Chem. Phys. 116 6760
[10] Wang L X, Zhang D C, Liu D S, Han S H and Xie S J 2003 Acta Phys. Sin. 52 2547 (in Chinese)
[11] Gao K, Fu J Y, Liu D S and Xie S J 2005 Acta Phys. Sin. 54 665 (in Chinese)
[12] Chen L S, Li S and Sun X 2003 Synthetic Met. 135-136 507
[13] Gao K, Liu X J, Liu D S and Xie S J 2005 J. Chem. Phys. 123 234702
[14] Li X X and Chen G 2017 Phys. Lett. A 381 549
[15] Li X X and Chen G 2017 Int. J. Mod. Phys. B 31 1750256
[16] An Z, Wu C Q and Sun X 2004 Phys. Rev. Lett. 93 216407
[17] Gao K, Xie S J, Yin S, Li Y, Liu D S and Zhao X 2009 Org. Electron. 10 1601
[18] Li X X, Dong X F, Gao K and Xie S J 2011 Chin. Phys. Lett. 28 123601
[19] Li X X 2014 Phys. Lett. A 378 1657
[20] Di B, Wang Y D, Zhang Y L and An Z 2013 Chin. Phys. B 22 067103
[21] Wang Y D, Liu J J, Liu Y X, Wang X R and Meng Y 2020 Eur. Phys. J. B 93 173
[22] Feng Y W, Zhao H, Chen Y G and Yan Y H 2017 Chin. Phys. B 26 107103
[23] Liu W, Zhang M H, Li H H, Wang Y J and Liu D S 2011 Chin. Phys. B 20 037102
[24] Du M Z, Liu X, Liu X H and Xie S J 2023 Phys. Rev. B 108 125419
[25] Ji Y W, Mu X Y, Yin H, Cui B, Hao X T and Gao K 2023 J. Phys. Chem. Lett. 14 3811
[26] Wang H, Shi H Y, Yuan X J, Zhao J F, Bu H X and Hu G C 2022 J. Phys. Chem. Lett. 13 614
[27] Li C, Li Y, Xu L X, Meng R X and Gao K 2020 J. Phys. Chem. C 124 1898
[28] Sun Z, Li S, Xie S J and An Z 2020 J. Phys. Chem. C 124 18894
[29] Sun Z, Li S, Xie S J and An Z 2021 Synthetic Met. 279 116841
[30] Lu Q X, Xie S J and Qu F Y 2021 J. Phys. Chem. Lett. 12 3540
[31] Gao T, Tian Q P, Du M Z, Zhang L L, Liu X, Qin W and Xie S J 2022 Appl. Phys. Lett. 120 032405
[32] Zhang M M, Shi X Y, Mu X Y, Wang L X and Gao K 2021 Appl. Phys. Lett. 118 133301
[33] Xu L X, Ji Y W, M X Y, Wang W J, Wang L X and Gao K 2022 Adv. Energy Sustainability Res. 3 2200102
[34] de Sousa Araújo Cassiano T, de Sousa L E, Ribeiro Júnior L A, Silva G M and de Oliveira Neto P H 2022 Synthetic Met. 287 117056
[35] Pereira Júnior M L, Enders B G, Giozza W F, de Sousa Júnior R T, Silva G M and Ribeiro Júnior L A 2020 J. Mater. Chem. C 8 12100
[36] Fischer M M, Ribeiro Júnior L A, da Cunha W F, de Sousa L E, Silva G M and de Oliveira Neto P H 2020 Carbon 158 553
[37] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[38] Su W P, Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099
[39] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
[40] Brazovskii S A and Kirova N N 1981 JETP Lett. 33 4
[41] Hubbard J 1963 Proc. R. Soc. Lond. A 276 238
[42] Brankin R W, Gladwell I and Shampine L F http://www.netlib.org
[43] Ono Y and Terai A 1990 J. Phys. Soc. Jpn. 59 2893
[1] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[2] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[3] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[4] Thickness-dependent exciton relaxation dynamics of few-layer rhenium diselenide
Chang-Fu Huo(霍唱福), Tiantian Yun(云田田), Xiao-Qing Yan(鄢小卿), Zewen Liu(刘泽文), Xin Zhao(赵欣), Wenxiong Xu(许文雄), Qiannan Cui(崔乾楠), Zhi-Bo Liu(刘智波), and Jian-Guo Tian(田建国). Chin. Phys. B, 2023, 32(6): 067203.
[5] Valley polarization in transition metal dichalcogenide layered semiconductors: Generation, relaxation, manipulation and transport
Hui Ma(马惠), Yaojie Zhu(朱耀杰), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Xilin Zhang(张喜林), Yanbo Ren(任琰博), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2023, 32(10): 107201.
[6] Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2023, 32(10): 107308.
[7] Efficient transfer of metallophosphor excitons via confined polaritons in organic nanocrystals
Wenbin Lu(芦文斌), Yongcong Chen(陈永聪), Xuyun Yang(杨旭云), and Ping Ao(敖平). Chin. Phys. B, 2023, 32(10): 104212.
[8] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[9] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[10] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[11] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[12] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[13] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[14] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[15] Temperature and doping dependent flat-band superconductivity on the Lieb-lattice
Feng Xu(徐峰), Lei Zhang(张磊), and Li-Yun Jiang(姜立运). Chin. Phys. B, 2021, 30(6): 067401.
No Suggested Reading articles found!