Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067203    DOI: 10.1088/1674-1056/acc1d3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thickness-dependent exciton relaxation dynamics of few-layer rhenium diselenide

Chang-Fu Huo(霍唱福)1,†, Tiantian Yun(云田田)1,†, Xiao-Qing Yan(鄢小卿)1,‡, Zewen Liu(刘泽文)1, Xin Zhao(赵欣)2, Wenxiong Xu(许文雄)3, Qiannan Cui(崔乾楠)3, Zhi-Bo Liu(刘智波)1,4,§, and Jian-Guo Tian(田建国)1
1 Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China;
2 School of Physical Science and Technology, Tiangong University, Tianjin 300387, China;
3 State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China;
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Rhenium diselenide (ReSe2) has gathered much attention due to its low symmetry of lattice structure, which makes it possess in-plane anisotropic optical, electrical as well as excitonic properties and further enables ReSe2 have an important application in optoelectronic devices. Here, we report the thickness-dependent exciton relaxation dynamics of mechanically exfoliated few-layer ReSe2 flakes by using time-resolved pump-probe transient transmission spectroscopies. The results reveal two thickness-dependent relaxation processes of the excitons. The fast one correlates with the exciton formation (i.e., the conversion of hot carriers to excitons), while the slow one is attributed to the exciton recombination dominated by defect-assisted exciton trapping besides photon emission channel. The decrease of scattering probability caused by defects leads to the increase of fast lifetime with thickness, and the increase of slow lifetime with thickness is related to the trap-mediated exciton depopulation induced by surface defects. Polarization-dependent transient spectroscopy indicates the isotropic exciton dynamics in the two-dimensional (2D) plane. These results are insightful for better understanding of excitonic dynamics of ReSe2 materials and its application in future optoelectronic and electronic devices.
Keywords:  rhenium diselenide      pump-probe spectroscopy      carrier dynamics      exciton  
Received:  16 December 2022      Revised:  16 February 2023      Accepted manuscript online:  07 March 2023
PACS:  72.80.Ga (Transition-metal compounds)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  78.47.D- (Time resolved spectroscopy (>1 psec))  
  78.47.jb (Transient absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074202, 12174207, and 11974190) and the Natural Science Foundation of Tianjin City (Grant Nos. 20JCQNJC00020 and 22JCYBJC00390).
Corresponding Authors:  Xiao-Qing Yan, Zhi-Bo Liu     E-mail:  yanxq01@nankai.edu.cn;liuzb@nankai.edu.cn

Cite this article: 

Chang-Fu Huo(霍唱福), Tiantian Yun(云田田), Xiao-Qing Yan(鄢小卿), Zewen Liu(刘泽文), Xin Zhao(赵欣), Wenxiong Xu(许文雄), Qiannan Cui(崔乾楠), Zhi-Bo Liu(刘智波), and Jian-Guo Tian(田建国) Thickness-dependent exciton relaxation dynamics of few-layer rhenium diselenide 2023 Chin. Phys. B 32 067203

[1] Bae S and Sim S2022 J. Korean Phys. Soc. 81 532
[2] Zhang L, He D W, He J Q, Fu Y and Wang Y S2019 Chin. Phys. B 28 087201
[3] Ma J J, Wu K, Wang Z Y, Ma R S, Bao L H, Dai Q, Ren J D and Gao H J2022 Chin. Phys. B 31 088105
[4] Kumar N, He J, He D, Wang Y and Zhao H2014 Nanoscale 6 12690
[5] Wang P, Qu J, Wei Y, Shi H, Wang J, Sun X, Li W, Liu W and Gao B2021 ACS Appl. Mater. Interfaces 13 58144
[6] Ho C H, Lee H W and Wu C C2004 J. Phys.: Condens. Matter 16 5937
[7] Wolverson D, Crampin S, Kazemi A S, Ilie A and Bending S J2014 ACS Nano 8 11154
[8] Huang Y S, Ho C H, Liao P C and Tiong K K1997 J. Alloys Compd. 262-263 92
[9] Li K, Du C, Gao H, Yin T, Zheng L, Leng J and Wang W2022 ACS Appl. Mater. Interfaces 14 33589
[10] Alcock N and Kjekshus A1965 Acta Chem. Scand. 19 79
[11] Wen W, Zhu Y, Liu X, Hsu H P, Fei Z, Chen Y, Wang X, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C and Xie L2017 Small 13 1603788
[12] Ho C H, Huang Y S, Tiong K K and Liao P C1998 Phys. Rev. B 58 16130
[13] Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, Chen Z G, Yang L, Zhang K, Lu S, Wang W, Liu S, Fang H, Zhou X, Yan H, Zou J, Wan X, Zhou P, Hu W and Xiu F2016 ACS Nano 10 8067
[14] Zhong H X, Gao S, Shi J J and Yang L2015 Phys. Rev. B 92 115438
[15] Arora A, Noky J, Drüppel M, Jariwala B, Deilmann T, Schneider R, Schmidt R, Del Pozo-Zamudio O, Stiehm T, Bhattacharya A, Krüger P, Michaelis de Vasconcellos S, Rohlfing M and Bratschitsch R2017 Nano Lett. 17 3202
[16] Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P and Wang H2015 Nano Res. 8 3651
[17] Ho C H, Liao P C, Huang Y S, Yang T R and Tiong K K1997 J. Appl. Phys. 81 6380
[18] Jariwala B, Voiry D, Jindal A, Chalke B A, Bapat R, Thamizhavel A, Chhowalla M, Deshmukh M and Bhattacharya A2016 Chem. Mater. 28 3352
[19] Jiang S, Yang J, Shi Y, Zhao J, Xie C, Zhao L, Fu J, Yang P, Huan Y, Xie Q, Jiang H, Zhang Q, Wang X, Su F and Zhang Y2020 Nano Res. 13 667
[20] Yang J, Jiang S, Xie J, Jiang H, Xu S, Zhang K, Shi Y, Zhang Y, Zeng Z, Fang G, Wang T and Su F2021 ACS Nano 15 16760
[21] Liu F, Zhao X, Yan X Q, Xie J, Hui W, Xin X, Liu Z B and Tian J G2019 J. Appl. Phys. 125 173105
[22] He J, Zhang L, He D, Wang Y, He Z and Zhao H2018 Opt. Express 26 21501
[23] Zhang L, He D, He J, Fu Y, Bian A, Han X, Liu S, Wang Y and Zhao H2019 Opt. Express 27 17851
[24] Choi Y, Kim K, Lim S Y, Kim J, Park J M, Kim J H, Lee Z and Cheong H2020 Nanoscale Horizons 5 308
[25] Mak K F, Lee C, Hone J, Shan J and Heinz T F2010 Phys. Rev. Lett. 105 136805
[26] Liu D, Hong J, Wang X, Li X, Feng Q, Tan C, Zhai T, Ding F, Peng H and Xu H2018 Adv. Funct. Mater. 28 1804696
[27] Huang Y, Gu Y, Wu X, Ge R, Chang Y F, Wang X, Zhang J, Akinwande D and Lee J C2021 Front. Nanotechnol. 3 782836
[28] Li Y C, Ge C, Wang P, Liu S, Ma X R, Wang B, Song H Y and Liu S B2022 Chin. Phys. B 31 067102
[29] Jin T X, Yang J Y, Fang Y, Han Y b and Song Y L2018 Chin. Phys. B 27 054208
[30] Ceballos F, Cui Q, Bellus M Z and Zhao H2016 Nanoscale 8 11681
[31] He J, He D, Wang Y, Cui Q, Ceballos F and Zhao H2015 Nanoscale 7 9526
[32] Zhao S, He D, He J, Zhang X, Yi L, Wang Y and Zhao H2018 Nanoscale 10 9538
[33] Schroeter D F, Griffiths D J and Sercel P C1996 Phys. Rev. B 54 1486
[34] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L2013 ACS Nano 7 1072
[35] Sim S, Lee D, Lee J, Cha M, Cha S, Heo W, Cho S, Shim W, Lee K, Yoo J, Prasankumar R P, Choi H and Jo M H2020 Phys. Rev. B 101 174309
[36] Wang H, Zhang C and Rana F2015 Nano Lett. 15 8204
[37] Ceballos F and Zhao H2017 Adv. Funct. Mater. 27 1604509
[38] Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F2015 Phys. Rev. Lett. 115 126802
[39] Pogna E A A, Marsili M, De Fazio D, Dal Conte S, Manzoni C, Sangalli D, Yoon D, Lombardo A, Ferrari A C, Marini A, Cerullo G and Prezzi D2016 ACS Nano 10 1182
[40] Steinhoff A, Rösner M, Jahnke F, Wehling T O and Gies C2014 Nano Lett. 14 3743
[41] Sun D, Rao Y, Reider G A, Chen G, You Y, Brézin L, Harutyunyan A R and Heinz T F2014 Nano Lett. 14 5625
[42] Sim S, Park J, Koirala N, Lee S, Brahlek M, Moon J, Salehi M, Kim J, Cha S, Sung J H, Jo M H, Oh S and Choi H2016 ACS Photon. 3 1426
[43] Parkinson P, Joyce H J, Gao Q, Tan H H, Zhang X, Zou J, Jagadish C, Herz L M and Johnston M B2009 Nano Lett. 9 3349
[44] Wang X, Shinokita K, Lim H E, Mohamed N B, Miyauchi Y, Cuong N T, Okada S and Matsuda K2019 Adv. Funct. Mater. 29 1806169
[45] Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H2014 Phys. Rev. B 89 125427
[46] Yuan L and Huang L2015 Nanoscale 7 7402
[47] Yuan L, Wang T, Zhu T, Zhou M and Huang L2017 J. Phys. Chem. Lett. 8 3371
[48] Liu B, Meng Y, Ruan X, Wang F, Liu W, Song F, Wang X, Wu J, He L, Zhang R and Xu Y2017 Nanoscale 9 18546
[49] Yu Y, Yu Y, Xu C, Barrette A, Gundogdu K and Cao L2016 Phys. Rev. B 93 201111
[50] Cunningham P D, McCreary K M and Jonker B T2016 J. Phys. Chem. Lett. 7 5242
[51] Mouri S, Miyauchi Y, Toh M, Zhao W, Eda G and Matsuda K2014 Phys. Rev. B 90 155449
[52] Zhang T and Wang J2021 ACS Photon. 8 2770
[53] He J, He D, Wang Y, Cui Q, Bellus M Z, Chiu H Y and Zhao H2015 ACS Nano 9 6436
[54] Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, You J, Zheng X, Xu Z, Cheng X A and Jiang T2019 Adv. Opt. Mater. 7 1900631
[1] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[2] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[3] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[4] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[5] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[6] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[9] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[10] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[11] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[12] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[13] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[14] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[15] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
No Suggested Reading articles found!