1 Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China; 2 School of Physical Science and Technology, Tiangong University, Tianjin 300387, China; 3 State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; 4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract Rhenium diselenide (ReSe2) has gathered much attention due to its low symmetry of lattice structure, which makes it possess in-plane anisotropic optical, electrical as well as excitonic properties and further enables ReSe2 have an important application in optoelectronic devices. Here, we report the thickness-dependent exciton relaxation dynamics of mechanically exfoliated few-layer ReSe2 flakes by using time-resolved pump-probe transient transmission spectroscopies. The results reveal two thickness-dependent relaxation processes of the excitons. The fast one correlates with the exciton formation (i.e., the conversion of hot carriers to excitons), while the slow one is attributed to the exciton recombination dominated by defect-assisted exciton trapping besides photon emission channel. The decrease of scattering probability caused by defects leads to the increase of fast lifetime with thickness, and the increase of slow lifetime with thickness is related to the trap-mediated exciton depopulation induced by surface defects. Polarization-dependent transient spectroscopy indicates the isotropic exciton dynamics in the two-dimensional (2D) plane. These results are insightful for better understanding of excitonic dynamics of ReSe2 materials and its application in future optoelectronic and electronic devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074202, 12174207, and 11974190) and the Natural Science Foundation of Tianjin City (Grant Nos. 20JCQNJC00020 and 22JCYBJC00390).
Corresponding Authors:
Xiao-Qing Yan, Zhi-Bo Liu
E-mail: yanxq01@nankai.edu.cn;liuzb@nankai.edu.cn
[1] Bae S and Sim S2022 J. Korean Phys. Soc.81 532 [2] Zhang L, He D W, He J Q, Fu Y and Wang Y S2019 Chin. Phys. B28 087201 [3] Ma J J, Wu K, Wang Z Y, Ma R S, Bao L H, Dai Q, Ren J D and Gao H J2022 Chin. Phys. B31 088105 [4] Kumar N, He J, He D, Wang Y and Zhao H2014 Nanoscale6 12690 [5] Wang P, Qu J, Wei Y, Shi H, Wang J, Sun X, Li W, Liu W and Gao B2021 ACS Appl. Mater. Interfaces13 58144 [6] Ho C H, Lee H W and Wu C C2004 J. Phys.: Condens. Matter16 5937 [7] Wolverson D, Crampin S, Kazemi A S, Ilie A and Bending S J2014 ACS Nano8 11154 [8] Huang Y S, Ho C H, Liao P C and Tiong K K1997 J. Alloys Compd.262-263 92 [9] Li K, Du C, Gao H, Yin T, Zheng L, Leng J and Wang W2022 ACS Appl. Mater. Interfaces14 33589 [10] Alcock N and Kjekshus A1965 Acta Chem. Scand.19 79 [11] Wen W, Zhu Y, Liu X, Hsu H P, Fei Z, Chen Y, Wang X, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C and Xie L2017 Small13 1603788 [12] Ho C H, Huang Y S, Tiong K K and Liao P C1998 Phys. Rev. B58 16130 [13] Zhang E, Wang P, Li Z, Wang H, Song C, Huang C, Chen Z G, Yang L, Zhang K, Lu S, Wang W, Liu S, Fang H, Zhou X, Yan H, Zou J, Wan X, Zhou P, Hu W and Xiu F2016 ACS Nano10 8067 [14] Zhong H X, Gao S, Shi J J and Yang L2015 Phys. Rev. B92 115438 [15] Arora A, Noky J, Drüppel M, Jariwala B, Deilmann T, Schneider R, Schmidt R, Del Pozo-Zamudio O, Stiehm T, Bhattacharya A, Krüger P, Michaelis de Vasconcellos S, Rohlfing M and Bratschitsch R2017 Nano Lett.17 3202 [16] Zhao H, Wu J, Zhong H, Guo Q, Wang X, Xia F, Yang L, Tan P and Wang H2015 Nano Res.8 3651 [17] Ho C H, Liao P C, Huang Y S, Yang T R and Tiong K K1997 J. Appl. Phys.81 6380 [18] Jariwala B, Voiry D, Jindal A, Chalke B A, Bapat R, Thamizhavel A, Chhowalla M, Deshmukh M and Bhattacharya A2016 Chem. Mater.28 3352 [19] Jiang S, Yang J, Shi Y, Zhao J, Xie C, Zhao L, Fu J, Yang P, Huan Y, Xie Q, Jiang H, Zhang Q, Wang X, Su F and Zhang Y2020 Nano Res.13 667 [20] Yang J, Jiang S, Xie J, Jiang H, Xu S, Zhang K, Shi Y, Zhang Y, Zeng Z, Fang G, Wang T and Su F2021 ACS Nano15 16760 [21] Liu F, Zhao X, Yan X Q, Xie J, Hui W, Xin X, Liu Z B and Tian J G2019 J. Appl. Phys.125 173105 [22] He J, Zhang L, He D, Wang Y, He Z and Zhao H2018 Opt. Express26 21501 [23] Zhang L, He D, He J, Fu Y, Bian A, Han X, Liu S, Wang Y and Zhao H2019 Opt. Express27 17851 [24] Choi Y, Kim K, Lim S Y, Kim J, Park J M, Kim J H, Lee Z and Cheong H2020 Nanoscale Horizons5 308 [25] Mak K F, Lee C, Hone J, Shan J and Heinz T F2010 Phys. Rev. Lett.105 136805 [26] Liu D, Hong J, Wang X, Li X, Feng Q, Tan C, Zhai T, Ding F, Peng H and Xu H2018 Adv. Funct. Mater.28 1804696 [27] Huang Y, Gu Y, Wu X, Ge R, Chang Y F, Wang X, Zhang J, Akinwande D and Lee J C2021 Front. Nanotechnol.3 782836 [28] Li Y C, Ge C, Wang P, Liu S, Ma X R, Wang B, Song H Y and Liu S B2022 Chin. Phys. B31 067102 [29] Jin T X, Yang J Y, Fang Y, Han Y b and Song Y L2018 Chin. Phys. B27 054208 [30] Ceballos F, Cui Q, Bellus M Z and Zhao H2016 Nanoscale8 11681 [31] He J, He D, Wang Y, Cui Q, Ceballos F and Zhao H2015 Nanoscale7 9526 [32] Zhao S, He D, He J, Zhang X, Yi L, Wang Y and Zhao H2018 Nanoscale10 9538 [33] Schroeter D F, Griffiths D J and Sercel P C1996 Phys. Rev. B54 1486 [34] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L2013 ACS Nano7 1072 [35] Sim S, Lee D, Lee J, Cha M, Cha S, Heo W, Cho S, Shim W, Lee K, Yoo J, Prasankumar R P, Choi H and Jo M H2020 Phys. Rev. B101 174309 [36] Wang H, Zhang C and Rana F2015 Nano Lett.15 8204 [37] Ceballos F and Zhao H2017 Adv. Funct. Mater.27 1604509 [38] Chernikov A, van der Zande A M, Hill H M, Rigosi A F, Velauthapillai A, Hone J and Heinz T F2015 Phys. Rev. Lett.115 126802 [39] Pogna E A A, Marsili M, De Fazio D, Dal Conte S, Manzoni C, Sangalli D, Yoon D, Lombardo A, Ferrari A C, Marini A, Cerullo G and Prezzi D2016 ACS Nano10 1182 [40] Steinhoff A, Rösner M, Jahnke F, Wehling T O and Gies C2014 Nano Lett.14 3743 [41] Sun D, Rao Y, Reider G A, Chen G, You Y, Brézin L, Harutyunyan A R and Heinz T F2014 Nano Lett.14 5625 [42] Sim S, Park J, Koirala N, Lee S, Brahlek M, Moon J, Salehi M, Kim J, Cha S, Sung J H, Jo M H, Oh S and Choi H2016 ACS Photon.3 1426 [43] Parkinson P, Joyce H J, Gao Q, Tan H H, Zhang X, Zou J, Jagadish C, Herz L M and Johnston M B2009 Nano Lett.9 3349 [44] Wang X, Shinokita K, Lim H E, Mohamed N B, Miyauchi Y, Cuong N T, Okada S and Matsuda K2019 Adv. Funct. Mater.29 1806169 [45] Kumar N, Cui Q, Ceballos F, He D, Wang Y and Zhao H2014 Phys. Rev. B89 125427 [46] Yuan L and Huang L2015 Nanoscale7 7402 [47] Yuan L, Wang T, Zhu T, Zhou M and Huang L2017 J. Phys. Chem. Lett.8 3371 [48] Liu B, Meng Y, Ruan X, Wang F, Liu W, Song F, Wang X, Wu J, He L, Zhang R and Xu Y2017 Nanoscale9 18546 [49] Yu Y, Yu Y, Xu C, Barrette A, Gundogdu K and Cao L2016 Phys. Rev. B93 201111 [50] Cunningham P D, McCreary K M and Jonker B T2016 J. Phys. Chem. Lett.7 5242 [51] Mouri S, Miyauchi Y, Toh M, Zhao W, Eda G and Matsuda K2014 Phys. Rev. B90 155449 [52] Zhang T and Wang J2021 ACS Photon.8 2770 [53] He J, He D, Wang Y, Cui Q, Bellus M Z, Chiu H Y and Zhao H2015 ACS Nano9 6436 [54] Zhang C, Ouyang H, Miao R, Sui Y, Hao H, Tang Y, You J, Zheng X, Xu Z, Cheng X A and Jiang T2019 Adv. Opt. Mater.7 1900631
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.