Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104212    DOI: 10.1088/1674-1056/acf03b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Efficient transfer of metallophosphor excitons via confined polaritons in organic nanocrystals

Wenbin Lu(芦文斌)1, Yongcong Chen(陈永聪)1,†, Xuyun Yang(杨旭云)1, and Ping Ao(敖平)2
1 Shanghai Center for Quantitative Life Sciences&Physics Department, Shanghai University, Shanghai 200444, China;
2 College of Biomedical Engineering, Sichuan University, Sichuan 610064, China
Abstract  We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820 (2018) and J. Am. Chem. Soc. 140 4269 (2018)]. Neither Dexter's nor Förster's mechanism of resonance energy transfer (RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton-polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys. Rev. Lett. 122 257402 (2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S1 and T1 states, offering a bridge for the long-lived T1 excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.
Keywords:  organic nanocrystals      phosphorescent emission      resonance energy transfer      exciton-polariton  
Received:  07 June 2023      Revised:  08 August 2023      Accepted manuscript online:  15 August 2023
PACS:  42.50.-p (Quantum optics)  
  03.65.-w (Quantum mechanics)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 16Z103060007) (PA). One of us (YCC) thanks Prof. Y W Zhong for visiting Shanghai University and for an insightful discussion on the experimental works. Thanks Shanghai Nanobubble Technology Co., Ltd. for supporting this work.
Corresponding Authors:  Yongcong Chen     E-mail:  chenyongcong@shu.edu.cn

Cite this article: 

Wenbin Lu(芦文斌), Yongcong Chen(陈永聪), Xuyun Yang(杨旭云), and Ping Ao(敖平) Efficient transfer of metallophosphor excitons via confined polaritons in organic nanocrystals 2023 Chin. Phys. B 32 104212

[1] Korotkevich A O, Galochkina Z S, Lavrova O and Coutsias E A 2015 Renew. Energ. 81 804
[2] Creatore C, Chin A W, Parker M A and Emmott S 2015 Front. Mater. 2 6
[3] Panda M K, Ladomenou K and Coutsolelos A G 2012 Coord. Chem. Rev. 256 2601
[4] van Grondelle R, Dekker J P, Gillbro T and Sundstrom V 1994 Biochimica et Biophysica Acta (BBA)-Bioenergetics 1187 1
[5] Brooks J, Babayan Y, Lamansky S, Djurovich P I, Tsyba I, Bau R and Thompson M E 2002 Inorg. Chem. 41 3055
[6] Grushin V V, Herron N, LeCloux D D, Marshall W J, Petrov V A and Wang Y 2001 Chem. Commun. 16 1494
[7] Sun M J, Liu Y, Yan Y, Li R, Shi Q, Zhao Y S, Zhong Y W and Yao J 2018 J. Am. Chem. Soc.
[8] Berggren M, Dodabalapur A, Slusher R and Bao Z 1997 Nature 389 466
[9] Morawetz H 1988 Science 240 172
[10] Baldo M A, Adachi C and Forrest S R 2000 Phys. Rev. B 62 10967
[11] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151
[12] Kalinowski J, Stampor W, Cocchi M, Virgili D, Fattori V and Di Marco P 2004 Chem. Phys. 297 39
[13] Steinbacher F S, Krause R, Hunze A and Winnacker A 2012 Phys. Status Solidi (a) 209 340
[14] Sun M J, Zhong Y W and Yao J 2018 Angew. Chem. Int. Ed. 57 7820
[15] Chen P Z, Weng Y X, Niu L Y, Chen Y Z, Wu L Z, Tung C H and Yang Q Z 2016 Angew. Chem. Int. Ed. 55 2759
[16] Chen Y C, Song B, Leggett A J, Ao P and Zhu X 2019 Phys. Rev. Lett. 122 257402
[17] Morse P M and Feshbach H 1954 Am. J. Phys. 22 410
[18] Dicke R H 1954 Phys. Rev. 93 99
[19] Lu W B, Chen Y C, Yang X Y and Ao P 2023 Supplemental information at url will be inserted by publisher on additional algebraic works for the present work
[20] Kakazu K and Kim Y 1994 Phys. Rev. A 50 1830
[21] Pekar S 1958 J. Phys. Chem. Solids 5 11
[22] Parson W W 2009 Modern Optical Spectroscopy: With Exercises and Examples from Biophysics and Biochemistry (Berlin: Springer)
[23] Wu S H, Ling J W, Lai S H, Huang M J, Cheng C H and Chen I C 2010 J. Phys. Chem. A 114 10339
[24] Pander P, Daniels R, Zaytsev A V, Horn A, Sil A, Penfold T J, Williams J G, Kozhevnikov V N and Dias F B 2021 Chem. Sci. 12 6172
[25] To W P, Zhou D, Tong G S M, Cheng G, Yang C and Che C M 2017 Angew. Chem. Int. Ed. 56 14036
[26] Peng L Y, Li Z W, Pan G N, Chen W K, Gao Y J and Cui G 2023 Phys. Chem. Chem. Phys. 25 6454
[27] Stranius K, Hertzog M and Börjesson K 2018 Nat. Commun. 9 2273
[28] Yersin H 2008 Highly Efficient OLEDs with Phosphorescent Materials (Hoboken: John Wiley & Sons)
[29] Kleinschmidt M, van Wüllen C and Marian C M 2015 J. Chem. Phys. 142 094301
[30] Parker C and Hatchard C 1962 J. Phys. Chem. 66 2506
[31] Yan Y and Zhao Y S 2012 Adv. Funct. Mater. 22 1330
[32] Liu Z, Duan G, Duan H and Wang Z 2022 Sol. Energy Mater. Sol. Cells 240 111688
[1] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
No Suggested Reading articles found!