Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030701    DOI: 10.1088/1674-1056/ad1a92
REVIEW Prev   Next  

Recent advances in protein conformation sampling by combining machine learning with molecular simulation

Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红)
Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Shanghai 200438, China
Abstract  The rapid advancement and broad application of machine learning (ML) have driven a groundbreaking revolution in computational biology. One of the most cutting-edge and important applications of ML is its integration with molecular simulations to improve the sampling efficiency of the vast conformational space of large biomolecules. This review focuses on recent studies that utilize ML-based techniques in the exploration of protein conformational landscape. We first highlight the recent development of ML-aided enhanced sampling methods, including heuristic algorithms and neural networks that are designed to refine the selection of reaction coordinates for the construction of bias potential, or facilitate the exploration of the unsampled region of the energy landscape. Further, we review the development of autoencoder based methods that combine molecular simulations and deep learning to expand the search for protein conformations. Lastly, we discuss the cutting-edge methodologies for the one-shot generation of protein conformations with precise Boltzmann weights. Collectively, this review demonstrates the promising potential of machine learning in revolutionizing our insight into the complex conformational ensembles of proteins.
Keywords:  machine learning      molecular simulation      protein conformational space      enhanced sampling  
Received:  17 November 2023      Revised:  11 December 2023      Accepted manuscript online:  04 January 2024
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  87.15.ap (Molecular dynamics simulation)  
  87.14.E- (Proteins)  
  87.15.B- (Structure of biomolecules)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF1204402), the National Natural Science Foundation of China (Grant Nos. 12074079 and 12374208), the Natural Science Foundation of Shanghai (Grant No. 22ZR1406800), and the China Postdoctoral Science Foundation (Grant No. 2022M720815).
Corresponding Authors:  Yiming Tang, Guanghong Wei     E-mail:  ymtang@fudan.edu.cn;ghwei@fudan.edu.cn

Cite this article: 

Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红) Recent advances in protein conformation sampling by combining machine learning with molecular simulation 2024 Chin. Phys. B 33 030701

[1] Karplus M and McCammon J A 1983 Annu. Rev. Biochem. 52 263
[2] Eisenberg D, Marcotte E M, Xenarios I and Yeates T O 2000 Nature 405 823
[3] Gregersen N, Bross P, Vang S and Christensen J H 2006 Annu. Rev. Genom. Hum. Genet. 7 103
[4] Vendruscolo M and Fuxreiter M 2022 Nat. Commun. 13 5550
[5] Ubarretxena-Belandia I and Stokes D L 2010 Adv. Protein Chem. Struct. Biol. 81 33
[6] Orts J and Gossert A D 2018 Methods 138 3
[7] Ikeya T, Guntert P and Ito Y 2019 Int. J. Mol. Sci. 20 2442
[8] Kulkarni P, Bhattacharya S, Achuthan S, Behal A, Jolly M K, Kotnala S, Mohanty A, Rangarajan G, Salgia R and Uversky V 2022 Chem. Rev. 122 6614
[9] Kulkarni P, Salgia R and Rangarajan G 2023 iScience 26 107109
[10] Patil A, Strom A R, Paulo J A, Collings C K, Ruff K M, Shinn M K, Sankar A, Cervantes K S, Wauer T, St Laurent J D, Xu G, Becker L A, Gygi S P, Pappu R V, Brangwynne C P and Kadoch C 2023 Cell 186 4936
[11] Wei G, Xi W, Nussinov R and Ma B 2016 Chem. Rev. 116 6516
[12] Prasad P A, Kanagasabai V, Arunachalam J and Gautham N 2007 J. Biosci. 32 909
[13] Liwo A, Czaplewski C, Oldziej S and Scheraga H A 2008 Curr. Opin. Struct. Biol. 18 134
[14] Compiani M and Capriotti E 2013 Biochemistry 52 8601
[15] Biswas P 2019 Adv. Protein Chem. Struct. Biol. 118 1
[16] Shea J E, Best R B and Mittal J 2021 Curr. Opin. Struct. Biol. 67 219
[17] Lindorff-Larsen K, Piana S, Dror R O and Shaw D E 2011 Science 334 517
[18] Robustelli P, Piana S and Shaw D E 2018 Proc. Natl. Acad. Sci. USA 115 E4758
[19] Ruff K M, Pappu R V and Holehouse A S 2019 Curr. Opin. Struct. Biol. 56 1
[20] Atilgan A R and Atilgan C 2022 Curr. Opin. Struct. Biol. 72 79
[21] Lee T S, Cerutti D S, Mermelstein D, Lin C, LeGrand S, Giese T J, Roitberg A, Case D A, Walker R C and York D M 2018 J. Chem. Inf. Model. 58 2043
[22] Pall S, Zhmurov A, Bauer P, Abraham M, Lundborg M, Gray A, Hess B and Lindahl E 2020 J. Chem. Phys. 153 134110
[23] Huang J and MacKerell A D 2018 Curr. Opin. Struct. Biol. 48 40
[24] Mu J, Liu H, Zhang J, Luo R and Chen H F 2021 J. Chem. Inf. Model. 61 1037
[25] Qi R, Wei G, Ma B and Nussinov R 2018 Peptide self-assembly: Methods and protocols (New York: Humana Press) p.101
[26] Bernardi R C, Melo M C R and Schulten K 2015 Biochim. Biophys. Acta. 1850 872
[27] Hamelberg D, Mongan J and McCammon J A 2004 J. Chem. Phys. 120 11919
[28] Zheng S and Pfaendtner J 2014 Mol. Simul. 41 55
[29] Bussi G and Laio A 2020 Nat. Rev. Phys. 2 200
[30] Ovchinnikov S and Huang P S 2021 Curr. Opin. Chem. Biol. 65 136
[31] Strokach A and Kim P M 2022 Curr. Opin. Struct. Biol. 72 226
[32] Pakhrin S C, Shrestha B, Adhikari B and Kc D B 2021 Int. J. Mol. Sci. 22 5553
[33] Dong T, Gong T and Li W 2021 J. Phys. Chem. B 125 9490
[34] Zeng X, Wang T, Kang Y, Bai G and Ma B 2023 Antibodies 12 58
[35] Lin P, Yan Y and Huang S Y 2023 Brief. Bioinform. 24 bbac499
[36] Lin P, Yan Y, Tao H and Huang S Y 2023 Nat. Commun. 14 4935
[37] Jumper J, Evans R, Pritzel A, et al. 2021 Nature 596 583
[38] Jumper J, Evans R, Pritzel A, et al. 2021 Proteins 89 1711
[39] Ruff K M and Pappu R V 2021 J. Mol. Biol. 433 167208
[40] Noe F, Tkatchenko A, Muller K R and Clementi C 2020 Annu. Rev. Phys. Chem. 71 361
[41] Wang Y, Lamim R J M and Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139
[42] Miron R A and Fichthorn K A 2004 Phys. Rev. Lett. 93 128301
[43] Qin Z and Buehler M J 2010 Phys. Rev. Lett. 104 198304
[44] Abyzov A, Blackledge M and Zweckstetter M 2022 Chem. Rev. 122 6719
[45] Alberti S, Gladfelter A and Mittag T 2019 Cell 176 419
[46] Yang Y I, Shao Q, Zhang J, Yang L and Gao Y Q 2019 J. Chem. Phys. 151 070902
[47] Tiwary P and van de Walle A 2016 A Review of Enhanced Sampling Approaches for Accelerated Molecular Dynamics (Cham: Springer International Publishing) p. 195
[48] Kätner J 2011 Wiley Interdiscip. Rev. Comput. Mol. Sci. 1 932
[49] Isralewitz B, Gao M and Schulten K 2001 Curr. Opin. Struct. Biol. 11 224
[50] Laio A and Gervasio F L 2008 Rep. Prog. Phys. 71 126601
[51] Allison J R 2020 Biochem. Soc. Trans. 48 1707
[52] Chen M 2021 Eur. Phys. J. B 94 211
[53] Pan A C, Weinreich T M, Shan Y, Scarpazza D P and Shaw D E 2014 J. Chem. Theory Comput. 10 2860
[54] Wehmeyer C and Noé F 2018 J. Chem. Phys. 148 241703
[55] Bonati L, Zhang Y Y and Parrinello M 2019 Proc. Natl. Acad. Sci. USA 116 17641
[56] Bonati L, Rizzi V and Parrinello M 2020 J. Phys. Chem. Lett. 11 2998
[57] Sultan M M, Wayment-Steele H K and Pande V S 2018 J. Chem. Theory Comput. 14 1887
[58] Perez-Hernandez G, Paul F, Giorgino T, De Fabritiis G and Noe F 2013 J. Chem. Phys. 139 015102
[59] Schwantes C R and Pande V S 2015 J. Chem. Theory Comput. 11 600
[60] Odstrcil R E, Dutta P and Liu J 2022 J. Chem. Theory Comput. 18 6297
[61] Odstrcil R E, Dutta P and Liu J 2023 J. Chem. Theory Comput. 19 6500
[62] Ribeiro J M L, Bravo P, Wang Y and Tiwary P 2018 J. Chem. Phys. 149 072301
[63] Itoh S G, Okumura H and Okamoto Y 2007 Mol. Simul. 33 47
[64] Stariolo D A and Cugliandolo L F 2020 Phys. Rev. E 102 022126
[65] Harada R and Shigeta Y 2017 J. Comput. Chem. 38 1921
[66] Harada R and Shigeta Y 2017 J. Chem. Inf. Model. 57 3070
[67] Shkurti A, Styliari I D, Balasubramanian V, Bethune I, Pedebos C, Jha S and Laughton C A 2019 J. Chem. Theory Comput. 15 2587
[68] Harada R and Kitao A 2013 J. Chem. Phys. 139 035103
[69] Shamsi Z, Cheng K J and Shukla D 2018 J. Phys. Chem. B 122 8386
[70] Kleiman D E and Shukla D 2022 J. Chem. Theory Comput. 18 5422
[71] Zhang J and Gong H 2020 J. Chem. Theory Comput. 16 4813
[72] Li W and Takada S 2010 Biophys. J. 99 3029
[73] Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid A E and Kolinski A 2016 Chem. Rev. 116 7898
[74] Joshi S Y and Deshmukh S A 2020 Mol. Simul. 47 786
[75] de Jong D H, Singh G, Bennett W F, Arnarez C, Wassenaar T A, Schafer L V, Periole X, Tieleman D P and Marrink S J 2013 J. Chem. Theory Comput. 9 687
[76] Souza P C T, Alessandri R, Barnoud J, et al. 2021 Nat. Methods 18 382
[77] Machado M R, Barrera E E, Klein F, Sonora M, Silva S and Pantano S 2019 J. Chem. Theory Comput. 15 2719
[78] Wang J, Olsson S, Wehmeyer C, Perez A, Charron N E, de Fabritiis G, Noe F and Clementi C 2019 ACS Cent. Sci. 5 755
[79] Majewski M, Perez A, Tholke P, Doerr S, Charron N E, Giorgino T, Husic B E, Clementi C, Noe F and De Fabritiis G 2023 Nat. Commun. 14 5739
[80] Kuhlman B and Bradley P 2019 Nat. Rev. Mol. Cell Biol. 20 681
[81] Soleymani F, Paquet E, Viktor H, Michalowski W and Spinello D 2022 Comput. Struct. Biotechnol. J. 20 5316
[82] Ferruz N, Heinzinger M, Akdel M, Goncearenco A, Naef L and Dallago C 2023 Comput. Struct. Biotechnol. J. 21 238
[83] Zheng L E, Barethiya S, Nordquist E and Chen J 2023 Molecules 28 4047
[84] Wayment-Steele H K and Pande V S 2018 J. Chem. Phys. 149 216101
[85] Degiacomi M T 2019 Structure 27 1034
[86] Ramaswamy V K, Musson S C, Willcocks C G and Degiacomi M T 2021 Phys. Rev. X 11 011052
[87] Jin Y, Johannissen L O and Hay S 2021 Proteins 89 915
[88] Gupta A, Dey S, Hicks A and Zhou H X 2022 Commun. Biol. 5 610
[89] Zhu J J, Zhang N J, Wei T and Chen H F 2023 Int. J. Mol. Sci. 24 6896
[90] Wetzel S J 2017 Phys. Rev. E 96 022140
[91] Song Z, Zhou H, Tian H, Wang X and Tao P 2020 Commun. Chem. 3 134
[92] Noé F, Olsson S, Kohler J and Wu H 2019 Science 365 eaaw1147
[93] Mahmoud A H, Masters M, Lee S J and Lill M A 2022 J. Chem. Inf. Model. 62 1602
[94] Dinh L, Krueger D and Bengio Y 2014 arXiv:1410.8516 [cs.LG]
[95] Dinh L, Sohl-Dickstein J and Bengio S 2016 arXiv:1605.08803 [cs.LG]
[96] Kullback S and Leibler R A 1951 Ann. Math. Stat. 22 79
[97] Kingma D P and Ba J 2014 arXiv:1412.6980 [cs.LG]
[1] Analysis of learnability of a novel hybrid quantum-classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[2] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[3] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[4] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[5] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[6] Generalization properties of restricted Boltzmann machine for short-range order
M A Timirgazin and A K Arzhnikov. Chin. Phys. B, 2023, 32(6): 067401.
[7] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[8] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[9] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[10] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[11] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[12] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[13] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[14] Applications and potentials of machine learning in optoelectronic materials research: An overview and perspectives
Cheng-Zhou Zhang(张城洲) and Xiao-Qian Fu(付小倩). Chin. Phys. B, 2023, 32(12): 126103.
[15] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
No Suggested Reading articles found!