|
|
Measuring small longitudinal phase shifts via weak measurement amplification |
Kai Xu(徐凯)1,2, Xiao-Min Hu(胡晓敏)1,2,3, Meng-Jun Hu(胡孟军)4,†, Ning-Ning Wang(王宁宁)1,2,3, Chao Zhang(张超)1,2,3, Yun-Feng Huang(黄运锋)1,2,3, Bi-Heng Liu(柳必恒)1,2,3,‡, Chuan-Feng Li(李传锋)1,2,3,§, Guang-Can Guo(郭光灿)1,2,3, and Yong-Sheng Zhang(张永生)1,2,3,¶ |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China; 4 Beijing Academy of Quantum Information Sciences, Beijing 100193, China |
|
|
Abstract Weak measurement amplification, which is considered as a very promising scheme in precision measurement, has been applied to various small physical quantities estimations. Since many physical quantities can be converted into phase signals, it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement. Here, we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation, which is suitable for polarization interferometry. We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference. Besides, we analyze the effect of magnification error which is never considered in the previous works, and find the constraint on the magnification. Our results may find important applications in high-precision measurements, e.g., gravitational wave detection.
|
Received: 22 November 2023
Revised: 07 January 2024
Accepted manuscript online: 09 January 2024
|
PACS:
|
06.20.-f
|
(Metrology)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208, and 12174367), the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301604), and the National Key Research and Development Program of China (Grant No. 2021YFE0113100). |
Corresponding Authors:
Meng-Jun Hu, Bi-Heng Liu, Chuan-Feng Li, Yong-Sheng Zhang
E-mail: humj@baqis.ac.cn;bhliu@ustc.edu.cn;cfli@ustc.edu.cn;yshzhang@ustc.edu.cn
|
Cite this article:
Kai Xu(徐凯), Xiao-Min Hu(胡晓敏), Meng-Jun Hu(胡孟军), Ning-Ning Wang(王宁宁), Chao Zhang(张超), Yun-Feng Huang(黄运锋), Bi-Heng Liu(柳必恒), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), and Yong-Sheng Zhang(张永生) Measuring small longitudinal phase shifts via weak measurement amplification 2024 Chin. Phys. B 33 030602
|
[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351 [2] Dressel J, Malik M, Miatto F M, Jordan A N and Boyd R W 2014 Rev. Mod. Phys. 86 307 [3] Jozsa R 2007 Phys. Rev. A 76 044103 [4] Ritchie N W M, Story J G and Hulet R G 1991 Phys. Rev. Lett. 66 1107 [5] Pryde G J, O'Brien J L, White A G, Ralph T C and Wiseman H M 2005 Phys. Rev. Lett. 94 220405 [6] Kedem Y and Vaidman L 2010 Phys. Rev. Lett. 105 230401 [7] Pusey M F 2014 Phys. Rev. Lett. 113 200401 [8] Leggett A J 1989 Phys. Rev. Lett. 62 2325 [9] Aharonov Y and Vaidman L 1989 Phys. Rev. Lett. 62 2327 [10] Ferrie C and Combes J 2014 Phys. Rev. Lett. 113 120404 [11] Brodutch A 2015 Phys. Rev. Lett. 114 118901 [12] Cohen E 2017 Found. Phys. 47 1261 [13] Kastner R 2017 Found. Phys. 47 697 [14] Aharonov Y, Botero A, Popescu S, Reznik B and Tollaksen J 2009 Phys. Lett. A 301 130 [15] Aharonov Y, Botero A, Popescu S, Reznik B and Tollaksen J 2009 New J. Phys. 11 033011 [16] Pan A K 2020 Phys. Rev. A 102 032206 [17] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188 [18] Kim Y, Kim Y S, Lee S Y, Han S W, Moon S, Kim Y H and Cho Y W 2018 Nat. Commun. 9 192 [19] Pan W W, Xu X Y, Kedem Y, Wang Q Q, Chen Z, Jan M, Sun K, Xu J S, Han Y J, Li C F and Guo G C 2019 Phys. Rev. Lett. 123 150402 [20] Xu L, Xu H, Jiang T, Xu F, Zheng K, Wang B, Zhang A and Zhang L 2021 Phys. Rev. Lett. 127 180401 [21] Hosten O and Kwiat P 2008 Science 319 787 [22] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601 [23] Tang T, Li J, Luo L, Shen J, Li C, Qin J, Bi L and Hou J 2019 Opt. Express 27 17638 [24] Li S, Chen Z, Xie L, Liao Q, Zhou X, Chen Y and Lin X 2021 Opt. Express 29 8777 [25] Huang J H, He F F, Duan X Y, Wang G J and Hu X Y 2022 Phys. Rev. A 105 013718 [26] Goggin M, Almeida M, Barbieri M, Lanyon B, O'Brien J, White A and Pryde G 2011 Proc. Natl. Acad. Sci. USA 108 1256 [27] Kocsis S, Braverman B, Ravets S, Stevens M, Mirin R, Shalm L and Steinberg A 2011 Science 332 1170 [28] Yu S, Meng Y, Tang J S, Xu X Y, Wang Y T, Yin P, Ke Z J, Liu W, Li Z P, Yang Y Z, Chen G, Han Y J, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 240506 [29] Li Z P, Wang Y T, Yu S, Liu W, Meng Y, Yang Y Z, Wang Z A, Guo N J, Zeng X D, Tang J S, Li C F and Guo G C 2022 Phys. Rev. A 106 012608 [30] Liu W T, Martínez-Rincón J and Howell J C 2019 Phys. Rev. A 100 012125 [31] Monroe J T, Yunger Halpern N, Lee T and Murch K W 2021 Phys. Rev. Lett. 126 100403 [32] Wu S and Li Y 2011 Phys. Rev. A 83 052106 [33] Zhu X, Zhang Y, Pang S, Qiao C, Liu Q and Wu S 2011 Phys. Rev. A 84 052111 [34] Nakamura K, Nishizawa A and Fujimoto M K 2012 Phys. Rev. A 85 012113 [35] Kofman A, Ashhab S and Nori F 2012 Phys. Rep. 520 43 [36] Aharonov Y and Vaidman L 1990 Phys. Rev. A 41 11 [37] Pal M, Saha S, B S A, Dutta Gupta S and Ghosh N 2019 Phys. Rev. A 99 032123 [38] Maga\ na Loaiza O S, Mirhosseini M, Rodenburg B and Boyd R W 2014 Phys. Rev. Lett. 112 200401 [39] Zhou C, Zhong S, Ma K, Xu Y, Shi L and He Y 2020 Phys. Rev. A 102 063717 [40] Bai X, Liu Y, Tang L, Zang Q, Li J, Lu W, Shi H, Sun X and Lu Y 2020 Opt. Express 28 15284 [41] Luo L, He Y, Liu X, Li Z, Duan P and Zhang Z 2020 Opt. Express 28 6408 [42] Wu Y, Liu S, Chen S, Luo H and Wen S 2022 Opt. Lett. 47 846 [43] Feizpour A, Xing X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603 [44] Hallaji M, Feizpour A, Dmochowski G, Sinclair J and Steinberg A 2017 Nat. Phys. 13 540 [45] Chen G, Aharon N, Sun Y N, Zhang Z, Zhang W H, He D Y, Tang J S, Xu X Y, Kedem Y, Li C F and Guo G C 2018 Nat. Commun. 9 93 [46] Chen G, Aharon N, Sun Y N, Zhang Z, Zhang W H, He D Y, Tang J S, Xu X Y, Kedem Y, Li C F and Guo G C 2018 Phys. Rev. Lett. 121 060506 [47] Starling D J, Dixon P B, Jordan A N and Howell J C 2010 Phys. Rev. A 82 063822 [48] Steinmetz J, Lyons K, Song M, Cardenas J and Jordan A N 2022 Opt. Express 30 3700 [49] Combes J, Ferrie C, Jiang Z and Caves C M 2014 Phys. Rev. A 89 052117 [50] Ferrie C and Combes J 2014 Phys. Rev. Lett. 112 040406 [51] Vaidman L 2014 arXiv:1402.0199 [quant-ph] [52] Kedem Y 2014 arXiv:1402.1352 [quant-ph] [53] Ferrie C and Combes J 2014 arXiv:1402.2954 [quant-ph] [54] Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032 [55] Pang S and Brun T A 2015 Phys. Rev. Lett. 115 120401 [56] Combes J, Ferrie C, Jiang Z and Caves C M 2014 Phys. Rev. A 89 052117 [57] Tanaka S and Yamamoto N 2013 Phys. Rev. A 88 042116 [58] Zhang L, Datta A and Walmsley I A 2015 Phys. Rev. Lett. 114 210801 [59] Feizpour A, Xing X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603 [60] Sinclair J, Hallaji M, Steinberg A M, Tollaksen J and Jordan A N 2017 Phys. Rev. A 96 052128 [61] Xia B, Huang J, Li H, Wang H and Zeng G 2023 Nat. Commun. 14 1021 [62] Jordan A N, Martínez-Rincón J and Howell J C 2014 Phys. Rev. X 4 011031 [63] Harris J, Boyd R W and Lundeen J S 2017 Phys. Rev. Lett. 118 070802 [64] Xu L, Liu Z, Datta A, Knee G C, Lundeen J S, Lu Y Q and Zhang L 2020 Phys. Rev. Lett. 125 080501 [65] Arvidsson-Shukur D, Halpern N Y, Lepage H V, Lasek A A, Barnes C and Lloyd S 2020 Nat. Commun. 11 3775 [66] Chen G, Yin P, Zhang W H, Li G C, Li C F and Guo G C 2021 Entropy 23 354 [67] Pang S, Dressel J and Brun T A 2014 Phys. Rev. Lett. 113 030401 [68] Pang S and Brun T A 2015 Phys. Rev. A 92 012120 [69] Dressel J, Lyons K, Jordan A N, Graham T M and Kwiat P G 2013 Phys.Rev. A 88 023821 [70] Lyons K 2015 Phys. Rev. Lett. 114 170801 [71] Wang Y T, Tang J S, Hu G, Wang J, Yu S, Zhou Z Q, Cheng Z D, Xu J S, Fang S Z, Wu Q L, Li C F and Guo G C 2016 Phys. Rev. Lett. 117 230801 [72] Krafczyk C, Jordan A N, Goggin M E and Kwiat P G 2021 Phys. Rev. Lett. 126 220801 [73] Kim Y, Yoo S Y and Kim Y H 2022 Phys. Rev. Lett. 128 040503 [74] Martínez-Rincón J, Liu W T, Viza G I and Howell J C 2016 Phys. Rev. Lett. 116 100803 [75] Martínez-Rincón J, Liu W T, Viza G I and Howell J C 2017 Opt. Lett. 42 903 [76] Zhang C, Lai Y, Yang R, Liu K, Zhang J, Sun H and Gao J 2023 Appl. Phys. Lett. 122 031107 [77] Huang J, Li Y, Fang C, Li H and Zeng G 2019 Phys. Rev. A 100 012109 [78] Stárek R, Mičuda M, Hošák R, Ježek M and Fiurášek J 2020 Opt. Express 28 34639 [79] Zhang Z H, Chen G, Xu X Y, Tang J S, Zhang W H, Han Y J, Li C F and Guo G C 2016 Phys. Rev. A 94 053843 [80] Brunner N and Simon C 2010 Phys. Rev. Lett. 105 010405 [81] Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604 [82] Li L, Li Y, Zhang Y L, Yu S, Lu C Y, Liu N L, Zhang J and Pan J W 2018 Phys. Rev. A 97 033851 [83] Hu M J and Zhang Y S 2017 arXiv:1707.00886 [quant-ph] [84] Hu M J and Zhang Y S 2017 arXiv:1709.01218 [quant-ph] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|