Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030503    DOI: 10.1088/1674-1056/ad1a93
GENERAL Prev   Next  

A novel variable-order fractional chaotic map and its dynamics

Zhouqing Tang(唐周青)1, Shaobo He(贺少波)2, Huihai Wang(王会海)1,†, Kehui Sun(孙克辉)3, Zhao Yao(姚昭)3, and Xianming Wu(吴先明)4
1 School of Electronic Information, Central South University, Changsha 410083, China;
2 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;
3 School of Physics, Central South University, Changsha 410083, China;
4 School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550025, China
Abstract  In recent years, fractional-order chaotic maps have been paid more attention in publications because of the memory effect. This paper presents a novel variable-order fractional sine map (VFSM) based on the discrete fractional calculus. Specially, the order is defined as an iterative function that incorporates the current state of the system. By analyzing phase diagrams, time sequences, bifurcations, Lyapunov exponents and fuzzy entropy complexity, the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map. The results reveal that the variable order has a good effect on improving the chaotic performance, and it enlarges the range of available parameter values as well as reduces non-chaotic windows. Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values. Moreover, the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation, which proves the potential applications in the field of information security.
Keywords:  chaos      fractional difference      variable order      multistability      complexity  
Received:  21 November 2023      Revised:  27 December 2023      Accepted manuscript online:  04 January 2024
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Tp (Time series analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071496, 61901530, and 62061008) and the Natural Science Foundation of Hunan Province of China (Grant No. 2020JJ5767).
Corresponding Authors:  Huihai Wang     E-mail:  wanghuihai_csu@csu.edu.cn

Cite this article: 

Zhouqing Tang(唐周青), Shaobo He(贺少波), Huihai Wang(王会海), Kehui Sun(孙克辉), Zhao Yao(姚昭), and Xianming Wu(吴先明) A novel variable-order fractional chaotic map and its dynamics 2024 Chin. Phys. B 33 030503

[1] Lawnik M, Moysis L and Volos C 2022 Electronics 11 3156
[2] Yan X P, Wang X Y and Xian Y J 2022 Chin. Phys. B 31 080504
[3] Zhou Y, Li C L, Li W, Li H M, Feng W and Qian K 2021 Nonlinear Dyn. 103 2043
[4] Gao X Y, Sun B, Cao Y H, Banerjee S and Mou J 2023 Chin. Phys. B 32 030501
[5] Bai B C, Zhao Q H, Yu X H, Wu H G and Xu Q 2023 Chaos Solitons Fractals 173 113748
[6] El-Latif A, Abd-El-Atty B, Amin M and Iliyasu A M 2020 Sci. Rep. 10 1930
[7] Rybin V, Butusov D, Rodionova E, Karimov T, Ostrovskii V and Tutueva A 2022 Int. J. Bifurcat. Chaos 32 2250136
[8] Li H Z, Hua Z Y, Bao H, Zhu L, Chen M and Bao B C 2020 IEEE Trans. Ind. Electron. 68 9931
[9] Li Y X, Li C B, Zhao Y B and Liu S C 2022 Chaos 32 021104
[10] Wu J Y, Li C B, Xu Y, Jiang Y C and Xu Y X 2023 IEEE Trans. Circuits Syst. I Regul. Pap. 70 378
[11] Yu F, Qian S, Chen X, Huang Y Y, Cai S, Jin J and Du S C 2021 Complexity 2021 6683284
[12] Li C Q, Li S J, Asim M, Nunez J, Alvarez G and Chen G R 2009 Image Vis. Comput. 27 1371
[13] Hartley T T, Lorenzo C F and Qammer H K 1995 IEEE Trans. Circuits Syst. I Fundam. Theor. Appl. 42 485
[14] Xu C J, Liao M X, Li P L, Yao L Y, Qin Q W and Shang Y L 2021 Fractal Fract. 5 257
[15] Lu J G and Chen G R 2006 Chaos Solitons Fractals 27 685
[16] Jumarie G 2009 Appl. Math. Lett. 22 378
[17] Odibat Z and Baleanu D 2020 Appl. Numer. Math. 156 94
[18] Liu Y 2016 Indian J. Phys. 90 313
[19] Ji Y D, Lai L, Zhong S C and Zhang L 2018 Commun. Nonlinear Sci. Numer. Simul. 57 352
[20] Tarasov V E and Zaslavsky G M 2008 J. Phys. A Math. Theor. 41 435101
[21] Edelman M 2020 Chaos Solitons Fractals 137 109774
[22] Li Y Q, He X and Zhang W 2020 Chaos Solitons Fractals 137 109774
[23] Zhou P, Ma J and Tang J 2020 Nonlinear Dyn. 100 2353
[24] Liu Z Y, Xia T C and Wang J B 2018 Chin. Phys. B 27 030502
[25] He S B, Banerjee S and Sun K H 2018 Chaos Solitons Fractals 115 14
[26] Patnaik S, Hollkamp J P and Semperlotti F 2020 Proc. Royal Soc. A 476 20190498
[27] Yao Z, Ma J, Yao Y G and Wang C N 2019 Nonlinear Dyn. 96 205
[28] Zhang H M, Liu F W, Phanikumar M S and Meerschaert M M 2013 Comput. Math. Appl. 66 693
[29] Yang X J and Machado J T 2017 Physica A 481 276
[30] Wu G C, Deng Z G, Baleanu D and Zeng D Q 2019 Chaos 29 083103
[31] Huang L L, Park J H, Wu G C and Mo Z W 2020 J. Comput. Appl. Math. 370 112633
[32] Gary H L and Zhang N F 1988 Math. Comput. 50 513
[33] Atici F and Eloe P 2009 Proc. Am. Math. Soc. 137 981
[34] Anastassiou G A 2009 arXiv: 0911.3370v1 [math.CA]
[35] Abdeljawad T 2011 Comput. Math. Appl. 62 1602
[36] Chen F L, Luo X N and Zhou Y 2011 Adv. Differ. Equ. 2011 713201
[37] Tavazoei M S and Haeri M 2009 Automatica 45 1886
[38] Diblík J, Fečkan M and Pospíšil M 2015 Appl. Math. Comput. 257 230
[39] Hua Z Y, Zhou B H and Zhou Y C 2018 IEEE Trans. Ind. Electron. 66 1273
[40] Karoun R C, Ouannas A, Horani M A and Grassi G 2022 Fractal Fract. 6 575
[41] Li C B, Li Z N, Jiang Y C, Lei T F and Wang X 2023 Symmetry 15 1564
[42] Wolf A, Swift J B, Harry L and Vastano J A 1985 Physica D 16 285
[43] Chen W T, Zhuang J, Yu W X and Wang Z Z 2009 Med. Eng. Phys. 31 61
[44] Dong C Y, Rajagopal K, He S B, Jafari S and Sun K H 2021 Results Phys. 31 105010
[45] Edelman M 2014 arXiv:1404.4906v4 [nlin.CD]
[46] Dong C Y, Sun K H, He S B and Wang H H 2021 Chaos 31 083132
[47] Rossler O 1979 Phys. Lett. A 71 155
[48] Natiq H, Banerjee S, Ariffin M and Said M 2019 Chaos 29 011103
[49] Jafari S, Sprott J C, Pham V, Golpayegani S M R H and Jafari A H 2014 Int. J. Bifurcat. Chaos 24 1450134
[50] Peng Y X, Sun K H and He S B 2020 Int. J. Bifurcat. Chaos 30 2050058
[51] Chen C, Sun K H and He S B 2019 Eur. Phys. J. Plus 134 410
[1] Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity
Meng-Jiao Wang(王梦蛟) and Lingfang Gu(辜玲芳). Chin. Phys. B, 2024, 33(2): 020504.
[2] Critical dispersion of chirped fiber Bragg grating for eliminating time delay signature of distributed feedback laser chaos
Da-Ming Wang(王大铭), Yi-Hang Lei(雷一航), Peng-Fei Shi(史鹏飞), and Zhuang-Ai Li(李壮爱). Chin. Phys. B, 2023, 32(9): 090505.
[3] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[4] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[5] Unstable periodic orbits analysis in the Qi system
Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红). Chin. Phys. B, 2023, 32(4): 040502.
[6] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[7] Dynamic modelling and chaos control for a thin plate oscillator using Bubnov-Galerkin integral method
Xiaodong Jiao(焦晓东), Xinyu Wang(王新宇), Jin Tao(陶金), Hao Sun(孙昊) Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(11): 110504.
[8] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[9] Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system
Wang-Peng Huang(黄旺鹏) and Qiang Lai(赖强). Chin. Phys. B, 2023, 32(10): 100504.
[10] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[11] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[14] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[15] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
No Suggested Reading articles found!