Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080504    DOI: 10.1088/1674-1056/ac5a43
GENERAL Prev   Next  

Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map

Xiaopeng Yan(闫晓鹏)1,†, Xingyuan Wang(王兴元)1,2,‡, and Yongjin Xian(咸永锦)1,§
1 School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China;
2 Guangxi Key Laboratory of Multi-source Information Mining&Security, Guangxi Normal University, Guilin 541004, China
Abstract  We present a new cosine chaotic mapping proved by chaos theory test and analysis such that the system has good cryptography properties, wide chaos range, simple structure, and good sensitivity to initial value, and the mapping can meet the needs of chaotic image encryption. Based on the cosine chaotic system, we propose a new encryption method. First, according to the cyclic characteristics of the mapping, the cyclic information wave is simulated. Second, the quasi-Doppler effect is used to synchronously scramble and diffuse the image to obfuscate the original pixel. Finally, the XOR diffusion of image pixels is carried out by information wave to further enhance the encryption effect. Simulation experiment and security analysis show that the algorithm has good security, can resist the common attack mode, and has good efficiency.
Keywords:  chaos mapping      cosine mapping      cyclic information wave      doppler effect      image encryption  
Received:  12 January 2022      Revised:  02 March 2022      Accepted manuscript online:  03 March 2022
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  95.75.Mn (Image processing (including source extraction))  
  95.10.Fh (Chaotic dynamics)  
  05.45.Ac (Low-dimensional chaos)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant No. 61672124), the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (Grant No. MMJJ20170203), the Liaoning Provincial Science and Technology Innovation Leading Talents Program (Grant No. XLYC1802013), the Key R&D Project of Liaoning Province (Grant No. 2019020105-JH2/103), Jinan City ‘20 Universities’ Funding Projects Introducing Innovation Team Program (Grant No. 2019GXRC031), Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (Grant No. MIMS20-M-02).
Corresponding Authors:  Xiaopeng Yan, Xingyuan Wang, Yongjin Xian     E-mail:;;

Cite this article: 

Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦) Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map 2022 Chin. Phys. B 31 080504

[1] Wang X Y and Liu P B 2022 IEEE Trans. Circuit. Syst. 69 1291
[2] Xian Y J, Wang X Y, Teng L, et al. 2021 IEEE Transactions on Circuits and Systems for Video Technology 32 4028
[3] Rivest R L, Shamir A and Adleman L 1978 Commun. ACM 21 120
[4] Wang X Y, Feng L and Zhao H Y 2019 Inf. Sci. 486 340
[5] Artiles J A P and Chaves D P B 2019 Signal Processing-Image Commun. 79 24
[6] ElAssad S and Farajallah M 2016 Signal Processing-Image Commun. 41 144
[7] Li Y P, Wang C H and Chen H 2017 Optics and Lasers in Engineering 90 238
[8] Chen J X, Zhu Z L, Zhang L B, et al. 2018 Signal Process. 142 340
[9] Fu X Q, Liu B C, Xie Y Y, et al. 2018 IEEE Photon. J. 10 3900515
[10] Wang X Y and Gao S 2020 Inf. Sci. 539 195
[11] Wang X, Zhou G, Dai C, et al. 2017 IEEE Photon. J. 9 7801908
[12] Wang M Y, Wang X Y, Zhao T Y, et al. 2021 Inf. Sci. 544 1
[13] Wang X Y and Gao S 2020 Inf. Sci. 507 16
[14] Zhou N R, Hua T X, Gong L H, et al. 2015 Quantum Inf. Process. 14 1193
[15] Yang Y G, Tian J, Lei H, et al. 2016 Inf. Sci. 345 257
[16] Wang C, Wang H X and Ji Y F 2018 Opt. Commun. 407 1
[17] Yang Z, Guo X, Chen Z, et al. 2019 IEEE Trans. Inf. Forensics and Security 14 1280
[18] Zhou R G, Luo J, Liu X A, et al. 2018 Int. J. Theoret. Phys. 57 1848
[19] Ding H, Zhen L I, Yang Y, et al. 2018 Chin. J. Electron. 27 150
[20] Liu Z L and Pun C M 2018 Inf. Sci. 433 188
[21] Xu J, Mao X, Jin X, et al. 2015 Visual Computer 31 1653
[22] Cao L J, Men C G and Ji R R 2013 Visual Computer 29 231
[23] Liu S T and Zhang L 2021 Surface Chaos and Its Applications (Singapore:Springer) pp. 30-32
[24] Ernawan F and Kabir M N 2020 Visual Computer 36 19
[25] Huang L, Cai S, Xiao M, et al. 2018 Entropy 20 535
[26] Kaur M and Kumar V 2018 Mod. Phys. Lett. B 32 1850115
[27] Muhammad K, Hamza R, Ahmad J, et al. 2018 IEEE Trans. Industrial Informat. 14 3679
[28] Seyedzadeh S M and Mirzakuchaki S 2012 Signal Process. 92 1202
[29] Vaidyanathan S, Akgul A, Kaçar S, et al. 2018 Eur. Phys. J. Plus 133 46
[30] Liu S T and Wang P 2018 Fractal Control Theory (Singapore:Springer Nature) pp. 97-111
[31] Liu S T, Zhang Y P and Liu C A 2020 Fractal Control and Its Applications (Switzerland:Springer Nature) pp. 61-80
[32] Liu S T, Wang Y P, Bi Z M and Wang Y 2021 Mathematical Principle and Fractal Analysis of Mesoscale Eddy (Singapore:Springer) pp. 121-125
[33] Hua Z and Zhou Y 2019 IEEE Trans. Systems, Man, Cybernetics:Systems 51 3713
[34] Hua Z, Zhou Y and Bao B 2019 IEEE Trans. Industrial Inform. 16 887
[35] Boriga R, Dascalescu A C and Diaconu A V 2014 Adv. Multimedia 2014 409586
[36] Hua Z, Zhang Y and Zhou Y 2020 IEEE Trans. Signal Process. 68 1937
[37] Hua Z and Zhou Y 2016 Inf. Sci. 339 237
[38] Wang X, Qin X and Liu C 2019 Multimedia Tools Appl. 78 6191
[39] Zhou S, Wang X, Wang Z, et al. 2019 Chaos 29 033125
[40] Abd El-Latif A A, Wang N, Han Q, et al. 2013 Signal Process. 93 2986
[41] Rakheja P, Vig R and Singh P 2019 Optik 198 163289
[42] Chai X, Fu X, Gan Z, et al. 2019 Signal Process. 155 44
[43] Wu J, Liao X and Yang B 2017 Signal Process. 141 109
[44] Hua Z Y, Zhou Y, Pun C M, et al. 2015 Inf. Sci. 297 80
[45] Wang X, Wang Q and Zhang Y 2015 Nonlinear Dyn. 79 1141
[46] Alawida M, Samsudin A, Teh J S, et al. 2019 Signal Process. 160 45
[47] Xian Y J and Wang X Y 2021 Inf. Sci. 547 1154
[48] Liu W H, Sun K H and Zhu C X 2016 Opt. Lasers Eng. 84 26
[49] Zhou Y, Bao L and Chen C L P 2013 Signal Process. 93 3039
[50] Wu Y, Zhou Y, Noonan J P, et al. 2014 Inf. Sci. 264 317
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[4] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[5] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[6] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[7] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[8] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[9] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[10] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[11] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[12] An image encryption algorithm based on improved baker transformation and chaotic S-box
Xing-Yuan Wang(王兴元), Huai-Huai Sun(孙怀怀), and Hao Gao(高浩). Chin. Phys. B, 2021, 30(6): 060507.
[13] Fractal sorting vector-based least significant bit chaotic permutation for image encryption
Yong-Jin Xian(咸永锦), Xing-Yuan Wang(王兴元), Ying-Qian Zhang(张盈谦), Xiao-Yu Wang(王晓雨), and Xiao-Hui Du(杜晓慧). Chin. Phys. B, 2021, 30(6): 060508.
[14] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[15] A secure image protection algorithm by steganography and encryption using the 2D-TSCC
Qi Li(李琦), Xingyuan Wang(王兴元), He Wang(王赫), Xiaolin Ye(叶晓林), Shuang Zhou(周双), Suo Gao(高锁), and Yunqing Shi(施云庆). Chin. Phys. B, 2021, 30(11): 110501.
No Suggested Reading articles found!