Critical dispersion of chirped fiber Bragg grating for eliminating time delay signature of distributed feedback laser chaos
Da-Ming Wang(王大铭)1,†, Yi-Hang Lei(雷一航)1, Peng-Fei Shi(史鹏飞)1, and Zhuang-Ai Li(李壮爱)2
1 School of Information, Shanxi University of Finance and Economics, Shanxi 030006, China; 2 School of Humanities, Communication University of Shanxi, Jinzhong 030619, China
Abstract Optical chaos has attracted widespread attention owing to its complex dynamic behaviors. However, the time delay signature (TDS) caused by the external cavity mode reduces the complexity of optical chaos. We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating (CFBG) for eliminating the TDS of laser chaos in this work. The critical dispersion, as a function of relaxation frequency and bandwidth of the optical spectrum, is found through extensive dynamics simulations. It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion. In addition, the influence of dispersive feedback light and output light from a laser is investigated. These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62105190), the Natural Science Foundation of Shanxi Province of China (Grant No. 20210302124268), the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province of China (Grant No. 2021L285), and the Youth Research Foundation Project of Shanxi University of Finance and Economics (Grant No. QN-202015).
Corresponding Authors:
Da-Ming Wang
E-mail: wangdaming033@163.com
Cite this article:
Da-Ming Wang(王大铭), Yi-Hang Lei(雷一航), Peng-Fei Shi(史鹏飞), and Zhuang-Ai Li(李壮爱) Critical dispersion of chirped fiber Bragg grating for eliminating time delay signature of distributed feedback laser chaos 2023 Chin. Phys. B 32 090505
[1] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature438 343 [2] Lavrov R, Jacquot M and Larger L 2010 IEEE J. Quantum Electron.46 1430 [3] Xiang S, Yang M and Wang J 2022 Opt. Lett.47 2818 [4] Gao Z, Liao L, Su B, Wu Q, Gao X, Fu S, Li Z, Wang Y and Qin Y 2022 Opt. Lett.47 5232 [5] Kanter I, Butkovski M, Peleg Y, Zigzag M, Aviad Y, Reidler I, Rosenbluh M and Kinzel W 2010 Opt. Express18 18292 [6] Yoshimura K, Muramatsu J, Davis P, Harayama T, Okumura H, Morikatsu S, Aida H and Uchida A 2012 Phys. Rev. Lett.108 70602 [7] Böhm F, Sahakian S, Dooms A, Verschaffelt G and Van der Sande G 2020 Phys. Rev. Appl.13 064014 [8] Gao H, Wang A, Wang L, Jia Z, Guo Y, Gao Z, Yan L, Qin Y and Wang Y 2021 Light Sci. Appl.10 172 [9] Huang Y, Zhou P and Li N 2021 Opt. Express29 19675 [10] Gao Z, Ma Z, Wu S, Gao H, Wang A, Fu S, Li Z, Qin Y and Wang Y 2022 Opt. Express30 23953 [11] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, and Davis P 2008 Nat. Photonics2 728 [12] Kanter I, Aviad Y, Reidler I, Cohen E and Rosenbluh M 2010 Nat. Photonics4 58 [13] Pu L, Ya G, Guo Y, Fan Y, Guo X, Liu X, Li K, Shore K A, Wang Y and Wang A 2018 J. Light. Technol.36 2531 [14] Guo Y, Cai Q, Li P, Zhang R, Xu B, Shore K A and Wang Y 2022 Adv. Photonics4 035001 [15] Huang C, Gao X, Wu S, Gu W, Su B, Wang Y, Qin Y and Gao Z 2022 Photonics9 952 [16] Ke J X, Yi L and Hu W 2019 IEEE Photon. Tech. Lett.31 1104 [17] Guo X, Xiang S, Qu Y, Han Y, Wen A and Hao Y 2021 J. Light. Technol.39 129 [18] Cai Q, Guo Y, Li P, Bogris A, Shore K A, Zhang Y and Wang Y 2021 Photonics Res.9 B1 [19] Rontani D, Locquet A, Sciamanna M, Citrin D S and Ortin S 2009 IEEE J. Quantum Electron.45 879 [20] Rontani D, Locquet A, Sciamanna M and Citrin D S 2007 Opt. Lett.32 2960 [21] Wu J, Xia G and Wu Z 2009 Opt. Express17 20124 [22] Wu J, Wu Z, Xia G and Feng G 2012 Opt. Express20 1741 [23] Zhou P, Fang Q and Li N 2020 Opt. Lett.45 399 [24] Jiang N, Zhao A, Liu S, Xue C, Wang B and Qiu K 2018 Opt. Lett.43 5359 [25] Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H and Lin L 2014 Opt. Commun.324 38 [26] Xu Y, Zhang M, Zhang L, Lu P, Mihailov S and Bao X 2017 Opt. Lett.42 4107 [27] Li S, Liu Q and Chan S 2012 IEEE Photon. J.4 1930 [28] Li S and Chan S 2015 IEEE J. Sel. Top. Quantum Electron.21 541 [29] Wang D, Wang L, Zhao T, Gao H, Wang Y, Chen X and Wang A 2017 Opt. Express25 10911 [30] Wang D, Wang L, Li P, Zhao T, Jia Z, Gao Z, Guo Y, Wang Y and Wang A 2019 Photonics6 59 [31] Lang R and Kobayashi K 1980 IEEE J. Quantum Electron.16 347 [32] Erdogan T 1997 J. Light. Technol.15 1277 [33] Uchida A 2012 Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization (Hoboken: Wiley-VCH) pp. 165-166
High power semiconductor laser array with single-mode emission Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.