Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090505    DOI: 10.1088/1674-1056/acddce
GENERAL Prev   Next  

Critical dispersion of chirped fiber Bragg grating for eliminating time delay signature of distributed feedback laser chaos

Da-Ming Wang(王大铭)1,†, Yi-Hang Lei(雷一航)1, Peng-Fei Shi(史鹏飞)1, and Zhuang-Ai Li(李壮爱)2
1 School of Information, Shanxi University of Finance and Economics, Shanxi 030006, China;
2 School of Humanities, Communication University of Shanxi, Jinzhong 030619, China
Abstract  Optical chaos has attracted widespread attention owing to its complex dynamic behaviors. However, the time delay signature (TDS) caused by the external cavity mode reduces the complexity of optical chaos. We propose and numerically demonstrate the critical dispersion of chirped fiber Bragg grating (CFBG) for eliminating the TDS of laser chaos in this work. The critical dispersion, as a function of relaxation frequency and bandwidth of the optical spectrum, is found through extensive dynamics simulations. It is shown that the TDS can be eliminated when the dispersion of CFBG is above this critical dispersion. In addition, the influence of dispersive feedback light and output light from a laser is investigated. These results provide important quantitative guidance for designing chaotic semiconductor lasers without TDS.
Keywords:  chaos      semiconductor laser      time delay signature      chirped fiber Bragg grating (CFBG)  
Received:  08 March 2023      Revised:  13 May 2023      Accepted manuscript online:  13 June 2023
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62105190), the Natural Science Foundation of Shanxi Province of China (Grant No. 20210302124268), the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province of China (Grant No. 2021L285), and the Youth Research Foundation Project of Shanxi University of Finance and Economics (Grant No. QN-202015).
Corresponding Authors:  Da-Ming Wang     E-mail:  wangdaming033@163.com

Cite this article: 

Da-Ming Wang(王大铭), Yi-Hang Lei(雷一航), Peng-Fei Shi(史鹏飞), and Zhuang-Ai Li(李壮爱) Critical dispersion of chirped fiber Bragg grating for eliminating time delay signature of distributed feedback laser chaos 2023 Chin. Phys. B 32 090505

[1] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L and Shore K A 2005 Nature 438 343
[2] Lavrov R, Jacquot M and Larger L 2010 IEEE J. Quantum Electron. 46 1430
[3] Xiang S, Yang M and Wang J 2022 Opt. Lett. 47 2818
[4] Gao Z, Liao L, Su B, Wu Q, Gao X, Fu S, Li Z, Wang Y and Qin Y 2022 Opt. Lett. 47 5232
[5] Kanter I, Butkovski M, Peleg Y, Zigzag M, Aviad Y, Reidler I, Rosenbluh M and Kinzel W 2010 Opt. Express 18 18292
[6] Yoshimura K, Muramatsu J, Davis P, Harayama T, Okumura H, Morikatsu S, Aida H and Uchida A 2012 Phys. Rev. Lett. 108 70602
[7] Böhm F, Sahakian S, Dooms A, Verschaffelt G and Van der Sande G 2020 Phys. Rev. Appl. 13 064014
[8] Gao H, Wang A, Wang L, Jia Z, Guo Y, Gao Z, Yan L, Qin Y and Wang Y 2021 Light Sci. Appl. 10 172
[9] Huang Y, Zhou P and Li N 2021 Opt. Express 29 19675
[10] Gao Z, Ma Z, Wu S, Gao H, Wang A, Fu S, Li Z, Qin Y and Wang Y 2022 Opt. Express 30 23953
[11] Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, and Davis P 2008 Nat. Photonics 2 728
[12] Kanter I, Aviad Y, Reidler I, Cohen E and Rosenbluh M 2010 Nat. Photonics 4 58
[13] Pu L, Ya G, Guo Y, Fan Y, Guo X, Liu X, Li K, Shore K A, Wang Y and Wang A 2018 J. Light. Technol. 36 2531
[14] Guo Y, Cai Q, Li P, Zhang R, Xu B, Shore K A and Wang Y 2022 Adv. Photonics 4 035001
[15] Huang C, Gao X, Wu S, Gu W, Su B, Wang Y, Qin Y and Gao Z 2022 Photonics 9 952
[16] Ke J X, Yi L and Hu W 2019 IEEE Photon. Tech. Lett. 31 1104
[17] Guo X, Xiang S, Qu Y, Han Y, Wen A and Hao Y 2021 J. Light. Technol. 39 129
[18] Cai Q, Guo Y, Li P, Bogris A, Shore K A, Zhang Y and Wang Y 2021 Photonics Res. 9 B1
[19] Rontani D, Locquet A, Sciamanna M, Citrin D S and Ortin S 2009 IEEE J. Quantum Electron. 45 879
[20] Rontani D, Locquet A, Sciamanna M and Citrin D S 2007 Opt. Lett. 32 2960
[21] Wu J, Xia G and Wu Z 2009 Opt. Express 17 20124
[22] Wu J, Wu Z, Xia G and Feng G 2012 Opt. Express 20 1741
[23] Zhou P, Fang Q and Li N 2020 Opt. Lett. 45 399
[24] Jiang N, Zhao A, Liu S, Xue C, Wang B and Qiu K 2018 Opt. Lett. 43 5359
[25] Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H and Lin L 2014 Opt. Commun. 324 38
[26] Xu Y, Zhang M, Zhang L, Lu P, Mihailov S and Bao X 2017 Opt. Lett. 42 4107
[27] Li S, Liu Q and Chan S 2012 IEEE Photon. J. 4 1930
[28] Li S and Chan S 2015 IEEE J. Sel. Top. Quantum Electron. 21 541
[29] Wang D, Wang L, Zhao T, Gao H, Wang Y, Chen X and Wang A 2017 Opt. Express 25 10911
[30] Wang D, Wang L, Li P, Zhao T, Jia Z, Gao Z, Guo Y, Wang Y and Wang A 2019 Photonics 6 59
[31] Lang R and Kobayashi K 1980 IEEE J. Quantum Electron. 16 347
[32] Erdogan T 1997 J. Light. Technol. 15 1277
[33] Uchida A 2012 Optical Communication with Chaotic Lasers: Applications of Nonlinear Dynamics and Synchronization (Hoboken: Wiley-VCH) pp. 165-166
[1] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Unstable periodic orbits analysis in the Qi system
Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红). Chin. Phys. B, 2023, 32(4): 040502.
[4] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[5] Dynamic modelling and chaos control for a thin plate oscillator using Bubnov-Galerkin integral method
Xiaodong Jiao(焦晓东), Xinyu Wang(王新宇), Jin Tao(陶金), Hao Sun(孙昊) Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(11): 110504.
[6] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[7] Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system
Wang-Peng Huang(黄旺鹏) and Qiang Lai(赖强). Chin. Phys. B, 2023, 32(10): 100504.
[8] Single-mode GaSb-based laterally coupled distributed-feedback laser for CO2 gas detection
Shi-Xian Han(韩实现), Jin-Yi Yan(严进一), Chun-Fang Cao(曹春芳), Jin Yang(杨锦), An-Tian Du(杜安天), Yuan-Yu Chen(陈元宇), Ruo-Tao Liu(刘若涛), Hai-Long Wang(王海龙), and Qian Gong(龚谦). Chin. Phys. B, 2023, 32(10): 104205.
[9] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[10] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[11] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[12] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[13] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[14] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[15] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
No Suggested Reading articles found!