|
|
Dual-wavelength pumped latticed Fermi-Pasta-Ulam recurrences in nonlinear Schrödinger equation |
Qian Zhang(张倩)1, Xiankun Yao(姚献坤)1,2,3,†, and Heng Dong(董恒)1 |
1 School of Physics, Northwest University, Xi'an 710127, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China |
|
|
Abstract We show that the nonlinear stage of the dual-wavelength pumped modulation instability (MI) in nonlinear Schrödinger equation (NLSE) can be effectively analyzed by mode truncation methods. The resulting complicated heteroclinic structure of instability unveils all possible dynamic trajectories of nonlinear waves. Significantly, the latticed-Fermi-Pasta-Ulam recurrences on the modulated-wave background in NLSE are also investigated and their dynamic trajectories run along the Hamiltonian contours of the heteroclinic structure. It is demonstrated that there has much richer dynamic behavior, in contrast to the nonlinear waves reported before. This novel nonlinear wave promises to inject new vitality into the study of MI.
|
Received: 16 October 2023
Revised: 18 December 2023
Accepted manuscript online: 22 December 2023
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12004309), the Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSQ036), and the Scientific Research Program funded by Shaanxi Provincial Education Department (Grant No. 20JK0947). |
Corresponding Authors:
Xiankun Yao
E-mail: yaoxk@nwu.edu.cn
|
Cite this article:
Qian Zhang(张倩), Xiankun Yao(姚献坤), and Heng Dong(董恒) Dual-wavelength pumped latticed Fermi-Pasta-Ulam recurrences in nonlinear Schrödinger equation 2024 Chin. Phys. B 33 030502
|
[1] Abdullaev F K, Baizakov B B, Darmanyan S A, Konotop V V and Salerno M 2001 Phys. Rev. A 64 043606 [2] Zhao L C 2018 Phys. Rev. E 97 062201 [3] Benjamin T B and Feir J E 1967 J. Fluid Mech. 27 417 [4] Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett. 56 135 [5] Taniuti T and Washimi H 1968 Phys. Rev. Lett. 21 209 [6] Zakharov V E and Ostrovsky L A 2009 Physica D 238 540 [7] Hammani K, Wetzel B, Kibler B, Fatome J, Finot C, Millot G, Akhmediev N and Dudley J 2011 Opt. Lett. 36 2140 [8] Akhmediev N and Korneev V 1986 Theor. Math. Phys. 69 1089 [9] Frisquet B, Kibler B and Millot G 2013 Phys. Rev. X 3 041032 [10] Mussot A, Kudlinski A, Droques M, Szriftgiser P and Akhmediev N 2014 Phys. Rev. X 4 011054 [11] Kimmoun O, Hsu H C, Branger H, Li M S, Chen Y Y, Kharif C, Onorato M, Kelleher E J R, Kibler B, Akhmediev N and Chabchoub A 2016 Sci. Rep. 6 srep28516 [12] Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A, Grinevich P, Santini P, Conti C and DelRe E 2018 Phys. Rev. X 8 041017 [13] Kibler B, Chabchoub A, Gelash A, Akhmediev N and Zakharov V E 2015 Phys. Rev. X 5 041026 [14] Liu C and Akhmediev N 2019 Phys. Rev. E 100 062201 [15] Liu C, Yang Z Y and Yang W L 2018 Chaos 28 083110 [16] Zhao L C, Ling L and Yang Z Y 2018 Phys. Rev. E 97 022218 [17] Kibler B, Fatome J, Finot C, Millot G, Genty G, Wetzel B, Akhmediev N, Dias F and Dudley J M 2012 Sci. Rep. 2 463 [18] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054 [19] Akhmediev N, Soto-Crespo J M and Ankiewicz A 2009 Phys. Lett. A 373 2137 [20] Liu C, Yang Z, Zhao L, Xin G and Yang W 2014 Opt. Lett. 39 1057 [21] Zhao L C, Duan L, Gao P and Yang Z Y 2019 Europhys. Lett. 125 40003 [22] Yao X, Liu C, Yang Z Y and Yang W L 2022 Phys. Rev. Res. 4 013246 [23] Yao X K, Yang Z Y and Yang W L 2021 Nonlinear Dyn. 103 1035 [24] Herbst B M, Ablowitz M J and Ryan E 1991 Comput. Phys. Commun. 65 137 [25] Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P and Trillo S 2018 Nat. Photonics 12 303 [26] Sheveleva A, Colman P, Dudley J M and Finot C 2023 Opt. Commun. 538 129472 [27] Conforti M, Mussot A, Kudlinski A, Nodari S, Dujardin G, De Biévre S, Armaroli A and Trillo A 2016 Phys. Rev. Lett. 117 013901 [28] De Angelis C, Santagiustina M and Trillo S 1995 Phys. Rev. A 51 774 [29] Mussot A, Conforti M, Trillo S, Copie F and Kudlinski A 2018 Adv. Opt. Photonics 10 1 [30] Deng Z, Zhang J, Fan D and Zhang L 2022 New J. Phys. 24 063018 [31] Bessin F, Naveau C, Conforti M, Kudlinski A, Szriftgiser P and Mussot A 2022 Commun. Phys. 5 6 [32] Vanderhaegen G, Szriftgiser P, Kudlinski A, Armaroli A, Conforti M, Mussot A and Trillo S 2023 Phys. Rev. A 108 033507 [33] Haelterman M, Trillo S and Wabnitz S 1992 Opt. Lett. 17 745 [34] Trillo S and Wabnitz S 1991 Opt. Lett. 16 986 [35] Lan Y, Zhao L C and Luo X 2019 Commun. Nonlinear Sci. Numer. Simul. 70 334 [36] Zhao L C, Ling L, Qi J W, Yang Z Y and Yang Z Y 2017 Commun. Nonlinear Sci. Numer. Simul. 49 39 [37] Agafontsev D S and Zakharov V E 2016 Nonlinearity 29 3551 [38] Luo Z C, Luo A P, Xu W C, Liu J R and Yin H S 2010 Appl. Phys. B 100 811 [39] Trillo S, Wabnitz S and Kennedy T A B 1994 Phys. Rev. A 50 1732 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|