Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060503    DOI: 10.1088/1674-1056/acc808
RAPID COMMUNICATION Prev   Next  

Stability and multistability of synchronization in networks of coupled phase oscillators

Yun Zhai(翟云)1,2,3, Xuan Wang(王璇)2,3, Jinghua Xiao(肖井华)1, and Zhigang Zheng(郑志刚)2,3,†
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Institute of Systems Science, Huaqiao University, Xiamen 361021, China;
3 College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state. Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.
Keywords:  synchronization      coupled phase oscillators      complex networks      multistability  
Received:  13 February 2023      Revised:  01 March 2023      Accepted manuscript online:  28 March 2023
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Ra (Coupled map lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875135).
Corresponding Authors:  Zhigang Zheng     E-mail:  zgzheng@bnu.edu.cn

Cite this article: 

Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚) Stability and multistability of synchronization in networks of coupled phase oscillators 2023 Chin. Phys. B 32 060503

[1] Zheng Z G2021 An introduction to emergence dynamics in complex systems (Singapore: Springer Singapore) pp. 133-196
[2] Pikovsky A, Rosenblum M and Kurths J2001 Synchronization: a universal concept in nonlinear sciences (Cambridge: Cambridge University Press)
[3] Zheng Z G2019 Emergence Dynamics in Complex Systems: From Synchronization to Collective Transport, vol. 1 (China Science Publishing Media Ltd) (in Chinese)
[4] Osaka M2017 Appl. Math. B 8 1227
[5] Buck J B and Buck E1968 Science 159 1319
[6] Kiss I Z, Zhai Y and Hudson J L2002 Science 296 1676
[7] Chandra S, Hathcock D, Crain K D, Antonsen T M, Girvan M and Ott E2017 Chaos 27 033102
[8] Witthaut D, Hellmann F, Kurths J, Kettemann S, Meyer-Ortmanns H and Timme M2022 Rev. Mod. Phys. 94 015005
[9] Winfree A T1967 J. Theor. Biol. 16 15
[10] Kuramoto Y1975 in International Symposium on Mathematical Problems in Theoretical Physics, edited by Araki H (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 420-422
[11] Acebron J A, Bonilla L L, Perez Vicente C J, Ritort F and Spigler R2005 Rev. Mod. Phys. 77 137
[12] Rodrigues F A, Peron T K D M, Ji P and Kurths J2016 Physics Reports 610 1
[13] Albert R and Barabási A L2002 Rev. Mod. Phys. 74 47
[14] Dorogovtsev S N and Mendes J F F2022 The nature of complex networks (OUP Oxford)
[15] Wang X F2002 Int. J. Bifurc. Chaos 12 885
[16] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U2006 Physics Reports 424 175
[17] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C2008 Physics Reports 469 93
[18] Boccaletti S, Almendral J A, Guan S, Leyva I, Liu Z, Sendia-Nadal I, Wang Z and Zou Y2016 Physics Reports 660 1
[19] Zhang Y and Xiao R2014 Physica A 416 33
[20] Zheng Z G, Hu G and Hu B B1998 Phys. Rev. Lett. 81 5318
[21] Zheng Z G, Hu B B and Hu G2000 Phys. Rev. E 62 402
[22] Hu B B and Zheng Z G2000 Int. J. Bifurc. Chaos 10 2399
[23] Kuramoto Y1984 Chemical oscillations, Waves, and Turbulence (Springer-Verlag)
[24] Watanabe S and Strogatz S H1993 Phys. Rev. Lett. 70 2391
[25] Watanabe S and Strogatz S H1994 Physica D 74 197
[26] Marvel S A, Mirollo R and Strogatz S H2009 Chaos 19 043104
[27] Ott E and Antonsen T M2008 Chaos 18 037113
[28] Ott E and Antonsen T M2009 Chaos 19 023117
[29] Watts D J and Strogatz S H1998 Nature 393 440
[30] Barabási and Albert1999 Science 286 509
[31] Wiley D A, Strogatz S H and Girvan M2006 Chaos 16 015103
[32] Zou W and Zhan M2009 SIAM J. Appl. Dyn. Syst. 8 1324
[33] Xie Y, Zhang L, Guo S J, Dai Q L and Yang J Z2019 PLoS ONE 14 e0213471
[34] Girnyk T, Hasler M and Maistrenko Y L2012 Chaos 22 013114
[35] Goebel M, Mizuhara M S and Stepanoff S2021 Chaos 31 103106
[36] Zhai Y, Xiao J H and Zheng Z G2023 Chin. Phys. B 32 060505
[37] Pecora L M and Carroll T L1998 Phys. Rev. Lett. 80 2109
[1] Synchronization-desynchronization transitions in networks of circle maps with sinusoidal coupling
Yun Zhai(翟云), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060505.
[2] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[3] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[4] Synchronization of stochastic complex networks with time-delayed coupling
Duolan(朵兰), Linying Xiang(项林英), and Guanrong Chen(陈关荣). Chin. Phys. B, 2023, 32(6): 060502.
[5] Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯). Chin. Phys. B, 2023, 32(5): 058701.
[6] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[7] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[8] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[9] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[10] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[11] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[12] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[13] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[14] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[15] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
No Suggested Reading articles found!