Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 100504    DOI: 10.1088/1674-1056/ace1d9
GENERAL Prev   Next  

Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system

Wang-Peng Huang(黄旺鹏)1 and Qiang Lai(赖强)1,2,†
1 School of Tian You, East China Jiaotong University, Nanchang 330013, China;
2 School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China
Abstract  This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system (MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos, quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.
Keywords:  chaos      memristive chaotic system      multi-wing attractors      coexisting attractors  
Received:  18 May 2023      Revised:  24 June 2023      Accepted manuscript online:  27 June 2023
PACS:  05.45.Ac (Low-dimensional chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62366014 and 61961019) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202008).
Corresponding Authors:  Qiang Lai     E-mail:  laiqiang87@126.com

Cite this article: 

Wang-Peng Huang(黄旺鹏) and Qiang Lai(赖强) Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system 2023 Chin. Phys. B 32 100504

[1] Lorenz E N 1963 Journal of the Atmospheric Sciences 20 130
[2] Lai Q, Hu G, Erkan U and Toktas A 2023 Expert Systems with Applications 213 118845
[3] Gao X, Sun B, Cao Y H, Banerjee S and Mou J 2023 Chin. Phys. B 32 030501
[4] Lai Q, Yang L and Liu Y 2022 Chaos, Solitons & Fractals 165 112781
[5] Ma M L, Xiaong K L, Li Z J and He S B 2023 Chin. Phys. B 32
[6] Alamodi A O A, Sun K H, Ai W, Chen C and Peng D 2019 Chin. Phys. B 28 020503
[7] Lai Q and Yang L 2022 IEEE Transactions on Circuits and Systems II: Express Briefs 70 1625
[8] Peng Y X, Sun K H and He S B 2022 Chin. Phys. B 29 030502
[9] Jia S H, Li Y X, Shi Q Y and Huang X 2022 Chin. Phys. B 31 070505
[10] Sahoo S and Roy B K 2022 Chaos, Solitons & Fractals 164 112598
[11] Wang M J, Deng Y, Liao X H, Li Z J, Ma M L and Zeng Y C 2019 International Journal of Nonlinear Mechanics 111 149
[12] Lin Y, Zhou X F, Gong J H, Yu F and Huang Y Y 2022 Front. Phys. 10 927991
[13] Lai Q, Wan Z Q and Kuate P D K 2023 IEEE Transactions on Circuits and Systems I: Regular Papers 70 1324
[14] Cui L, Luo W H and Ou Q L 2021 Chin. Phys. B 30 020501
[15] Wan Q Z, Li F, Chen S M and Yang Q 2023 Chaos, Solitons & Fractals 169 113259
[16] Bao H, Ding R Y, Chen B, Xu Q and Bao B C 2023 Chaos, Solitons & Fractals 169 113228
[17] Zhang L P, Liu Y, Wei Z C, Jiang H B, Lyu W P and Bi Q S 2022 Chin. Phys. B 31 100503
[18] Ma M, Lu Y, Li Z, Sun Y and Wang C 2023 Fractal Fract. 7 82
[19] Balaraman S, Kengne J, Fogue M S K and Rajagopal K 2023 Chaos, Solitons & Fractals 172 113619
[20] Chua L 1971 IEEE Transactions on Circuit Theory 18 507
[21] Yu F, Zhang Z, Shen H, Huang Y Y, Cai S and Du S C 2022 Chin. Phys. B 31 020505
[22] Sun Q K, He S B, Sun K H and Wang H H 2022 Chin. Phys. B 31 120501
[23] Ma M L, Xie X H, Yang Y, Li Z J and Sun Y C 2023 Chin. Phys. B 32 058701
[24] Ma M L, Xiong K L, Li Z J and Sun Y C 2023 Mathematics 11 375
[25] Xie W L, Wang C H and Lin H R 2021 Nonlinear Dyn. 104 4523
[26] Jiao X D, Yuan M F, Tao J, Sun H, Sun Q L and Chen Z Q 2023 Chin. Phys. B 32 010507
[27] Jin J and Cui L 2019 Complexity 2019 4106398
[28] Li R H, Wang Z H and Dong E Z 2021 Nonlinear Dyn. 104 4459
[29] Zhou L, Wang C H and Zhou L L 2018 International Journal of Circuit Theory and Applications 46 84
[30] Zhang S, Zheng J H, Wang X P, Zeng Z G and He S B 2020 Nonlinear Dyn. 102 2821
[31] Zhang S, Zheng J H,Wang X P and Zeng Z G 2021 Chaos 31 011101
[32] Li R H, Wang Z H and Dong E Z 2021 Nonlinear Dyn. 104 4459
[33] Li F D and Zeng J R 2016 Energies 16 2494
[34] Xia X Z, Zeng Y C and Li Z J 2018 Pramana 91 82
[35] Lai Q and Chen Z J 2023 Chaos, Solitons & Fractals 170 113341
[36] Yu F, Kong X X, Mokbel A A M, Wei Yao and Cai S 2022 IEEE Transactions on Circuits and Systems II: Express Briefs 70 326
[37] Lai Q, Wan Z Q, Zhang H and Chen G R 2022 IEEE Transactions on Neural Networks and Learning Systems
[38] Li C B and Sprott J C 2016 Optik 127 10389
[39] Li C B and Sprott J C 2014 Int. J. Bifurc. Chaos 24 1450131
[1] Critical dispersion of chirped fiber Bragg grating for eliminating time delay signature of distributed feedback laser chaos
Da-Ming Wang(王大铭), Yi-Hang Lei(雷一航), Peng-Fei Shi(史鹏飞), and Zhuang-Ai Li(李壮爱). Chin. Phys. B, 2023, 32(9): 090505.
[2] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[3] Unstable periodic orbits analysis in the Qi system
Lian Jia(贾莲), Chengwei Dong(董成伟), Hantao Li(李瀚涛), and Xiaohong Sui(眭晓红). Chin. Phys. B, 2023, 32(4): 040502.
[4] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[5] Dynamic modelling and chaos control for a thin plate oscillator using Bubnov-Galerkin integral method
Xiaodong Jiao(焦晓东), Xinyu Wang(王新宇), Jin Tao(陶金), Hao Sun(孙昊) Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(11): 110504.
[6] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[7] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[8] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[9] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[12] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[13] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[14] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[15] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
No Suggested Reading articles found!