Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 060501    DOI: 10.1088/1674-1056/acc0f6
GENERAL Prev   Next  

A novel fractional-order hyperchaotic complex system and its synchronization

Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波)
School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  A novel fractional-order hyperchaotic complex system is proposed by introducing the Caputo fractional-order derivative operator and a constant term to the complex simplified Lorenz system. The proposed system has different numbers of equilibria for different ranges of parameters. The dynamics of the proposed system is investigated by means of phase portraits, Lyapunov exponents, bifurcation diagrams, and basins of attraction. The results show abundant dynamical characteristics. Particularly, the phenomena of extreme multistability as well as hidden attractors are discovered. In addition, the complex generalized projective synchronization is implemented between two fractional-order hyperchaotic complex systems with different fractional orders. Based on the fractional Lyapunov stability theorem, the synchronization controllers are designed, and the theoretical results are verified and demonstrated by numerical simulations. It lays the foundation for practical applications of the proposed system.
Keywords:  fractional calculus      complex hyperchaos      simplified Lorenz system      complex generalized projective synchronization  
Received:  08 December 2022      Revised:  21 February 2023      Accepted manuscript online:  03 March 2023
PACS:  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071496, 61901530, and 62061008) and the Innovation Project of Graduate of Central South University (Grant No. 2022zzts0681).
Corresponding Authors:  Kehui Sun     E-mail:  kehui@csu.edu.cn

Cite this article: 

Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波) A novel fractional-order hyperchaotic complex system and its synchronization 2023 Chin. Phys. B 32 060501

[1] Sun H H, Abdelwahab A and Onaral B 1984 IEEE Trans. Automat. Control 29 441
[2] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[3] G. Adomian 1984 J. Math. Anal. Appl. 102 420
[4] Zhang H Y, Sun K H and He S B 2021 Nonlinear Dyn. 106 1027
[5] Peng D, Sun K H and Alamodi A O A 2019 Int. J. Mod. Phys. B 33 1950031
[6] Wang H H, Zhan D L, Wu X M and He S B 2022 Eur. Phys. J. Spec. Top. 231 2467
[7] Li X J, Mou J, Banerjee S, Wang Z S and Cao Y H 2022 Chaos, Solitons and Fractals 159 112133
[8] Ye X L, Wang X Y, Mou J, Yan X P and Xian Y J 2018 Eur. Phys. J. Plus 133 516
[9] Ma C G, Mou J, Yang F F and Yan H Z 2020 Eur. Phys. J. Plus 135 100
[10] Liu T M, Yan H Z, Banerjee S and Mou J 2021 Chaos, Solitons and Fractals 145 110791
[11] Fowler A C, Gibbon J D and McGuinness M J 1982 Physica D 4 139
[12] Mahmoud G M, Bountis T and Mahmoud E E 2007 Int. J. Bifurcat. Chaos 17 4295
[13] Mahmoud G M, Ahmed M E and Mahmoud E E 2008 Int. J. Mod. Phys. C 19 1477
[14] Mahmoud G M, Mahmoud E E and Ahmed M E 2009 Nonlinear Dyn. 58 725
[15] Luo C and Wang X Y 2013 Nonlinear Dyn. 71 241
[16] Luo C and Wang X Y 2013 Int. J. Mod. Phys. C 24 1350025
[17] Yang F F, Mou J, Liu J, Ma C G and Yan H Z 2020 Signal Process. 169 107373
[18] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[19] Mahmoud G M and Mahmoud E E 2012 Nonlinear Dyn. 67 1613
[20] Mahmoud G M and Mahmoud E E 2010 Nonlinear Dyn. 62 875
[21] Liu D F, Wu Z Y and Ye Q L 2014 Nonlinear Dyn. 75 209
[22] Luo C and Wang X Y 2013 J. Franklin Inst. 350 2646
[23] Sun J W, Cui G Z, Wang Y F and Shen Y 2015 Nonlinear Dyn. 79 953
[24] Liu J, Chen G R and Zhao X 2021 Fractals 29 2150081
[25] He S B, Sun K H, Wang H H, Mei X Y and Sun Y F 2018 Nonlinear Dyn. 92 85
[26] Hens C, Dana S K and Feudel U 2015 Chaos 25 053112
[27] Bao B C, Xu Q, Bao H and Chen M 2016 Electron Lett. 52 1008
[28] Bao B C, Jiang T, Wang G Y, Jin P P, Bao H and Chen M 2017 Nonlinear Dyn. 89 1157
[29] Lai Q, Kuate P D K, Liu F and Iu H H C 2020 IEEE Trans. Circuits Syst. II Express Briefs 67 1129
[30] Bao H, Liu W B and Chen M 2019 Nonlinear Dyn. 96 1879
[31] Chang H, Li Y X, Yuan F and Chen G R 2019 Int. J. Bifurcat. Chaos 29 1950086
[32] Yuan F, Wang G Y and Wang X W 2016 Chaos 26 073107
[33] Dudkowski D, Jafari S, Kapitaniak T, Kuznetsov N V, Leonov G A and Prasad A 2016 Phys. Rep. 637 1
[34] Wei Z C 2011 Phys. Lett. A 376 102
[35] Pham V T, Volos C, Jafari S, Wei Z C and Wang X 2014 Int. J. Bifurcat. Chaos 24 1450073
[36] Lai Q, Wan Z Q and Kuate P D K 2020 Electron Lett. 56 1044
[37] Sun K H and Sprott J C 2009 Int. J. Bifurcat. Chaos 19 1357
[38] Jin M X, Sun K H and Wang H H 2021 Nonlinear Dyn. 106 2667
[39] Petras I 2010 IEEE Trans. Circuits Syst. II Express Briefs 57 975
[40] Sun K H, Liu X and Zhu C X 2010 Chin. Phys. B 19 110510
[41] Von-Bremen H F, Udwadia F E and Proskurowski W 1997 Physica D 101 1
[42] Aguila-Camacho N, Duarte-Mermoud M A and Gallegos J A 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2951
[43] Chen D Y, Zhang R F, Liu X Z and Ma X Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 4105
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[5] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[6] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[9] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[10] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[11] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[12] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[13] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[14] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
Wei Han-Yu (魏含玉), Xia Tie-Cheng (夏铁成 ). Chin. Phys. B, 2012, 21(11): 110203.
[15] Exact solutions for nonlinear partial fractional differential equations
Khaled A. Gepreel, Saleh Omran. Chin. Phys. B, 2012, 21(11): 110204.
No Suggested Reading articles found!