Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020502    DOI: 10.1088/1674-1056/ac2b1b
GENERAL Prev   Next  

Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network

Ai-Xue Qi(齐爱学)1, Bin-Da Zhu(朱斌达)2, and Guang-Yi Wang(王光义)2,†
1 Faculty of Aerospace Engineering, Binzhou University, Binzhou 256603, China;
2 Institute of Modern Circuits and Intelligent Information, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  This paper presents a new hyperbolic-type memristor model, whose frequency-dependent pinched hysteresis loops and equivalent circuit are tested by numerical simulations and analog integrated operational amplifier circuits. Based on the hyperbolic-type memristor model, we design a cellular neural network (CNN) with 3-neurons, whose characteristics are analyzed by bifurcations, basins of attraction, complexity analysis, and circuit simulations. We find that the memristive CNN can exhibit some complex dynamic behaviors, including multi-equilibrium points, state-dependent bifurcations, various coexisting chaotic and periodic attractors, and offset of the positions of attractors. By calculating the complexity of the memristor-based CNN system through the spectral entropy (SE) analysis, it can be seen that the complexity curve is consistent with the Lyapunov exponent spectrum, i.e., when the system is in the chaotic state, its SE complexity is higher, while when the system is in the periodic state, its SE complexity is lower. Finally, the realizability and chaotic characteristics of the memristive CNN system are verified by an analog circuit simulation experiment.
Keywords:  memristor      cellular neural network      chaos  
Received:  06 February 2021      Revised:  24 September 2021      Accepted manuscript online:  29 September 2021
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771176 and 62171173).
Corresponding Authors:  Guang-Yi Wang     E-mail:  wanggyi@163.com

Cite this article: 

Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义) Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network 2022 Chin. Phys. B 31 020502

[1] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[2] Strukov D B, Snider G S, Stewart D R and Stanley Williams R 2008 Nature 453 80
[3] Chen L, He Z L, Li C D and Umar H G A 2019 Advances in Difference Equations 132
[4] Chen L, He, Z, Li C, Wen S and Chen Y 2020 Int. J. Bifur. Chaos 30 2050172
[5] Chua L and Yang L 1998 IEEE Trans. Circ. Syst. 35 1257
[6] Chua L and Yang L 1998 IEEE Trans. Circ. Syst. 35 1273
[7] Vaidyanathan S 2015 International Journal of PharmTech Research 8 632
[8] Hu G, Rong J and Kou W 2018 Journal of Digital Information Management 16 246
[9] Karakaya B, Celik V and Gulten A 2017 Int. J. Circ. Theory Appl. 45 1885
[10] Korn H and Faure P 2003 C. R. Biologies 326 787
[11] Chua L and Roska T 2003 Int. J. Bifur. Chaos 13 1
[12] Chen A and Yuan S 2001 Journal of Chenzhou Teachers College 22 6
[13] Arena P, Baglio S, Fortuna L and Manganaro M 1995 IEEE Trans. Circ. Syst. I:Fundamental Theory and Applications 42 123
[14] Chen L, Li C and Chen Y 2018 Int. J. Bifur. Chaos 28 1850080
[15] Chen L, Li C D, Huang T W, Hu X F and Chen Y R 2016 Neurocomputing 171 1637
[16] Itoh M 2019 Neural and Evolutionary Computing
[17] Itoh M and Chua L 2009 Int. J. Bifur. Chaos 19 3605
[18] Ahn B H, Lee J, Lin J M, Cheng H P, Hou J L and Esmaeilzadeh H 2020 arXiv:2003. 02369v1[cs. DC]
[19] Hu X, Feng G, Duan S and Liu L 2015 Neurocomputing 162 150
[20] Li Q, Tang S and Zeng H 2014 Nonlinear Dyn. 78 1087
[21] Pham V T and Jafari S 2016 Science China Technological Sciences 59 358
[22] Huang X, Zhao Z and Wang Z 2012 Neurocomputing 94 13
[23] Hu X F, Wang W H, Sun B, Wang Y C, Li J and Zhou G D 2021 J. Phys. Chem. Lett. 12 5377
[24] Liu H J, Chen C L, Zhu X, et al. 2020 Chin. Phys. B 29 028502
[25] Xue W H, Ci W J, Xu X H, et al. 2020 Chin. Phys. B 29 048401
[26] Shao N, Zhang S B and Shao S Y 2019 Acta Phys. Sin. 68 198502 (in Chinese)
[27] Bao B C, Qian H and Xu Q 2017 Frontiers in Computational Neuroscience 23 00081
[28] Buscarino A and Fortuna L 2011 International Symposium on Signals, IEEE
[29] Liao L Y and Zhang X 2017 Journal of Computational and Nonlinear Dynamics 12 031002
[30] Yuan F, Wang G Y and Wang X Y 2015 Chin. Phys. B 24 060506
[31] Li C B, Sprott J C, Julien and Xing H Y 2016 Int. J. Bifur. Chaos 26 1650233
[32] Staniczenko P P A, Lee C F and Jones N S 2009 Phys. Rev. E 79 011915
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[6] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[7] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[8] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[9] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[10] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[11] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[12] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[13] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[14] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[15] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
No Suggested Reading articles found!