Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030303    DOI: 10.1088/1674-1056/ad1746
GENERAL Prev   Next  

Real eigenvalues determined by recursion of eigenstates

Tong Liu(刘通) and Youguo Wang(王友国)
School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Quantum physics is primarily concerned with real eigenvalues, stemming from the unitarity of time evolutions. With the introduction of PT symmetry, a widely accepted consensus is that, even if the Hamiltonian of the system is not Hermitian, the eigenvalues can still be purely real under specific symmetry. Hence, great enthusiasm has been devoted to exploring the eigenvalue problem of non-Hermitian systems. In this work, from a distinct perspective, we demonstrate that real eigenvalues can also emerge under the appropriate recursive condition of eigenstates. Consequently, our findings provide another path to extract the real energy spectrum of non-Hermitian systems, which guarantees the conservation of probability and stimulates future experimental observations.
Keywords:  real eigenvalues      non-Hermitian      quasiperiodic  
Received:  22 September 2023      Revised:  11 December 2023      Accepted manuscript online:  20 December 2023
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62071248), the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY223109), and China Postdoctoral Science Foundation (Grant No. 2022M721693).
Corresponding Authors:  Youguo Wang     E-mail:  wangyg@njupt.edu.cn

Cite this article: 

Tong Liu(刘通) and Youguo Wang(王友国) Real eigenvalues determined by recursion of eigenstates 2024 Chin. Phys. B 33 030303

[1] Shankar R 1994 Principles of Quantum Mechanics (New York: Plenum)
[2] Lindblad G 1976 Commun. Math. Phys. 48 119
[3] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[4] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[5] Ding P and Yi W 2022 Chin. Phys. B 31 010309
[6] Zhang S, Jin L and Song Z 2022 Chin. Phys. B 31 010312
[7] Wu Y, Liu W, Geng J, Song X, Ye X, Duan C, Rong X and Du J 2019 Science 364 878
[8] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[9] Bender C M 2007 Rep. Prog. Phys. 70 947
[10] Long Y, Xue H and Zhang B 2022 Phys. Rev. B 105 L100102
[11] Tai T and Lee C 2023 Phys. Rev. B 107 L220301
[12] Zhou L and Han W 2021 Chin. Phys. B 30 100308
[13] Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803
[14] Yao S, Song F, and Wang Z 2018 Phys. Rev. Lett. 121 136802
[15] Cai X 2021 Phys. Rev. B 103 214202
[16] Cai X 2022 Phys. Rev. B 106 214207
[17] Liu T, Cheng S, Guo H, and Gao X 2021 Phys. Rev. B 103 104203
[18] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205
[19] Jazaeri A and Satija I 2001 Phys. Rev. E 63 036222
[20] Longhi S 2019 Phys. Rev. B 100 125157
[21] Thouless D 1974 Phys. Rep. 13 93
[22] Avila A 2015 Acta. Math. 215 1
[23] Liu T and Cheng S 2023 Chin. Phys. B 32 027102
[24] Liu T and Xia X 2022 Phys. Rev. B 105 054201
[25] Liu T and Xia X 2024 Chin. Phys. Lett. 41 017102
[26] Hatano N and Nelson D 1996 Phys. Rev. Lett. 77 570
[27] Hatano N and Nelson D 1998 Phys. Rev. B 58 8384
[28] Goldsheid I and Khoruzhenko B 2003 Comm. Math. Phys. 238 505
[1] Majorana tunneling in a one-dimensional wire with non-Hermitian double quantum dots
Peng-Bin Niu(牛鹏斌) and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2024, 33(1): 017403.
[2] Theory of complex-coordinate transformation acoustics for non-Hermitian metamaterials
Hao-Xiang Li(李澔翔), Yang Tan(谭杨), Jing Yang(杨京), and Bin Liang(梁彬). Chin. Phys. B, 2023, 32(9): 094301.
[3] General mapping of one-dimensional non-Hermitian mosaic models to non-mosaic counterparts: Mobility edges and Lyapunov exponents
Sheng-Lian Jiang(蒋盛莲), Yanxia Liu(刘彦霞), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(9): 097204.
[4] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[5] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[6] Symmetry-constrained quantum coupling in non-Fermi-liquid transport
Rong Li(李荣) and Zhen-Su She(佘振苏). Chin. Phys. B, 2023, 32(6): 067104.
[7] Quantum speed limit of a single atom in a squeezed optical cavity mode
Ya-Jie Ma(马雅洁), Xue-Chen Gao(高雪晨), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040308.
[8] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[9] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[10] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[11] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[12] Novel transmission property of zero-index metamaterial waveguide doped with gain and lossy defects
Qionggan Zhu(朱琼干), Lichen Chai(柴立臣), and Hai Lu(路海). Chin. Phys. B, 2023, 32(10): 104215.
[13] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[14] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[15] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
No Suggested Reading articles found!