Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030302    DOI: 10.1088/1674-1056/ad1c5c
RAPID COMMUNICATION Prev   Next  

One-step quantum dialogue

Peng-Hui Zhu(朱鹏辉)1,2, Wei Zhong(钟伟)3, Ming-Ming Du(杜明明)2, Xi-Yun Li(李喜云)1, Lan Zhou(周澜)1,†, and Yu-Bo Sheng(盛宇波)2,3,‡
1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Quantum dialogue (QD) enables two communication parties to directly exchange secret messages simultaneously. In conventional QD protocols, photons need to transmit in the quantum channel for two rounds. In this paper, we propose a one-step QD protocol based on the hyperentanglement. With the help of the non-local hyperentanglement-assisted Bell state measurement (BSM), the photons only need to transmit in the quantum channel once. We prove that our one-step QD protocol is secure in theory and numerically simulate its secret message capacity under practical experimental condition. Compared with previous QD protocols, the one-step QD protocol can effectively simplify the experiment operations and reduce the message loss caused by the photon transmission loss. Meanwhile, the non-local hyperentanglement-assisted BSM has a success probability of 100% and is feasible with linear optical elements. Moreover, combined with the hyperentanglement heralded amplification and purification, our protocol is possible to realize long-distance one-step QD.
Keywords:  one-step quantum dialogue      hyperentanglement      hyperentanglement distribution      non-local Bell-state measurement  
Received:  23 November 2023      Revised:  29 December 2023      Accepted manuscript online:  09 January 2024
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175106 and 92365110).
Corresponding Authors:  Lan Zhou, Yu-Bo Sheng     E-mail:  zhoul@njupt.edu.cn;shengyb@njupt.edu.cn

Cite this article: 

Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波) One-step quantum dialogue 2024 Chin. Phys. B 33 030302

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers Systems, and Signal Processing, December 10-12, 1984, Bangalore, India, pp. 175-179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T and Lindenthal M B B 2007 Nat. Phys. 3 481
[4] Sasaki T, Yamamoto Y and Koashi M 2014 Nature 509 475
[5] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[6] Ren M, Zhou L and Yuan Z 2023 Sci China: Inf. Sci. 66 180503
[7] Ma L, Yang J, Zhang T, et al. 2023 Sci China: Inf. Sci. 66 180507
[8] Wu L X, Feng Y Y and Zhou J 2023 Chin. Phys. B 32 070310
[9] Zhang X X, Lu Y F, Wang Y, Jiang M S, Li H W, Zhou C, Zhou Y and Bao W S 2023 Chin. Phys. B 32 050308
[10] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[11] Fu Y, Yin H L, Chen T Y, Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501
[12] Ju X X, Zhong W, Sheng Y B and Zhou L 2022 Chin. Phys. B 31 100302
[13] Shen A, Cao X Y, Wang Y, Fu Y, et al. 2023 Sci. China Phys. Mech. Astron. 66 260311
[14] Xing D, Wang Y F, Dou Z, Li J, Chen X B and Li L X 2023 Chin. Phys. B 32 070308
[15] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[16] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[17] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[18] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[19] Nguyen B A 2004 Phys. Lett. A 328 6
[20] Man Z X, Zhang Z J and Liu Y 2005 Chin. Phys. Lett. 22 22
[21] Qi R Y, Sun Z, Lin Z S, et al. 2019 Light Sci. Appl. 8 22
[22] Zhou L, Sheng Y B and Long G L 2020 Sci. Bull. 65 12
[23] Zhou Z R, Sheng Y B, Niu P H, Yin L G, Long G L and Hanzo L 2020 Sci. China Phys. Mech. Astron. 63 230362
[24] Sun Z, Song L Y, Huang Q, et al. 2020 IEEE Trans. Commun. 68 5778
[25] Li T and Long G L 2020 New J. Phys. 22 063017
[26] Long G L and Zhang H R 2021 Sci. Bull. 66 1267
[27] Cao Z W, Wang L, Liang K X, Chai G and Peng J Y 2021 Phys. Rev. Appl. 16 024012
[28] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367
[29] Zhou L and Sheng Y B 2022 Sci. China Phys. Mech. Astron. 65 250311
[30] Ying J W, Zhou L, Zhong W and Sheng Y B 2022 Chin. Phys. B 31 120303
[31] Zhou L, Xu B W, Zhong W and Sheng Y B 2023 Phys. Rev. Appl. 19 014036
[32] Liang K X, Cao Z W, Chen X L, Wang L, Chai G and Peng J Y 2023 Front. Phys. 18 51301
[33] Zeng H, Du M M, Zhong W, Zhou L and Sheng Y B 2023 Funda. Res.
[34] Zhang Q, Du M M, Zhong W, Sheng Y B and Zhou L 2023 Ann. Phys. Berlin
[35] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light Sci. Appl. 5 e16144
[36] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[37] Zhu F, Zhang W, Sheng Y B and Huang Y D 2017 Sci. Bull. 62 1519
[38] Pan D, Lin Z S, Yin L G, Wu J W, Sun Z, Ruan D and Long G L 2020 Photon. Res. 8 1522
[39] Qi Z T, Li Y H, Huang Y W, Feng J, Zheng Y L, Chen X F 2021 Light Sci. Appl. 10 183
[40] Zhang H R, Sun Z, Qi R Y, Yin L G, Long G L and Lu J H 2022 Light Sci. Appl. 11 83
[41] Long G L, Pan D, Sheng Y B, Xue Q K, Lu J H and Hanzo L 2022 IEEE Network 36 82
[42] Paparelle I, Mousavi F, Scazza F, Bassi A, Paris M and Zavatta A 2023 arXiv:2306.14322
[43] Yang Y G and Wen Q Y 2007 Sci. China Ser. G-Phys. Mech. Astron. 50 558
[44] Gao F, Guo F Z, Wen Q Y and Zhu F C 2008 Sci. China Ser. G-Phys. Mech. Astron. 51 559
[45] Shi G F, Xi X Q, Tian X L, et al. 2009 Opt. Commun. 282 2460
[46] Shi G F, Xi X Q, Hu M L, et al. 2010 Opt. Commun. 283 1984
[47] Gao G 2010 Opt. Commun. 283 2288
[48] Ye T Y 2014 Commun. Theor. Phys. 62 338
[49] Zheng C and Long G F 2014 Sci. China Phys. Mech. Astron. 57 1238
[50] Ye T Y and Jiang L Z 2014 Phys. Scr. 89 015103
[51] Gong L H, Tian C, Li J F and Zou X F 2018 Quant. Inf. Process. 17 331
[52] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[53] Hu X M, Guo Y, Liu B H, Huang Y F, Li C F and Guo G C 2018 Sci. Adv. 4 eaat9304
[54] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[55] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[56] Ecker S, Sohr P, Bulla L, Huber M and Bohmann M 2021 Phys. Rev. Lett. 127 040506
[57] Hu X M, Huang C X, Sheng Y B, et al. 2021 Phys. Rev. Lett. 126 010503
[58] Walborn S P, Pádua S and Monken C H 2003 Phys. Rev. A 68 042313
[59] Schuck C, Huber G, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Lett. 96 190501
[60] Wang X L, Cai X D, Su Z E, et al. 2015 Nature 518 516
[61] Chapman J C, Graham T M, Zeitler C K, Bernstein H J and Kwiat P G 2020 Phys. Rev. Appl. 14 014044
[62] Chen Y, Ecker S, Wengerowsky S, Bulla L, Joshi S K, Steinlechner F and Ursin R 2018 Phys. Rev. Lett. 121 200502
[63] Hu X M, Xing W B, Liu B H, He D Y, Cao H, Guo Y, Zhang C, Zhang H, Huang Y F, Li C F and Guo G C 2020 Optica 7 738
[64] Zhao P, Yang M Y, Zhu S, Zhou L, Zhong W, Du M M and Sheng Y B 2023 Sci. China Phys. Mech. Astron. 66 100311
[65] Chen Z B, Pan J W, Zhang Y D, Brukner C and Zeilinger A 2003 Phys. Rev. Lett. 90 160408
[66] Wyner A D 1975 Bell Syst. Tech. J. 54 1355
[67] Wu J W, Lin Z S, Yin L G and Long G L 2019 Quant. Engin. 1 e26
[68] Liu X, Li Z, Luo D, et al. 2021 Sci. China Phys. Mech. Astron. 64 120311
[69] Ma X F, Fung C H F and Lo H K 2007 Phys. Rev. A 76 012307
[70] Takesue H, Harada K, Tamaki K, et al. 2010 Opt. Express 18 16777
[71] Zhang Q, Xie X P, Takesue H, et al. 2007 Opt. Express 15 10288
[72] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[73] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[74] Ren B C, Wei H R, Hua M, et al. 2012 Opt. Express 20 24664
[75] Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
[76] Wang G Y, Ai Q, Ren B C, et al. 2016 Opt. Express 24 28444
[77] Yang S J, Wang X J, Bao X H and Pan J W 2016 Nat. Photon. 10 381
[78] Zhong T, Kindem J M, Bartholomew J G, Rochman J, Craiciu I, et al. 2017 Science 357 1392
[79] Hsiao Y F, Tsai P J, Chen H S, et al. 2018 Phys. Rev. Lett. 120 183602
[80] Guo J X, Feng X T, Yang P Y, Yu Z F, Chen L Q, Yuan C H and Zhang W P 2019 Nat. Commun. 10 148
[81] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon. 13 346
[82] Ma Y, Ma Y Z, Zhou Z Q, Li C F and Guo G C 2021 Nat. Commun. 12 2381
[83] Zhang X Y, Zhang B, Wei S H, Li H, Liao J Y, Li C, Deng G W, Wang Y, Song H Z and You L X 2023 Sci. Adv. 9 eadf4587
[84] Yang G, Zhang Y S, Yang Z R, et al. 2019 Quant. Inf. Process. 18 1
[85] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[1] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[2] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[3] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[4] Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal
Yang-He Chen(陈洋河), Bo Ji(季波), Nian-Qin Li(李念芹), Zhen Jiang(姜震), Wei Li(李维),Yu-Dong Li(李昱东), Liang-Sen Feng(冯梁森), Teng-Fei Wu(武腾飞), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(12): 120307.
[5] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[6] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[7] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[8] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[9] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[10] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
No Suggested Reading articles found!