Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪)1, Bing Zhang(张冰)1,†, Bo Yan(闫博)1, Xiang-Qian Jiang(姜向前)1,‡, and Xiu-Dong Sun(孙秀冬)1,2
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract We investigate the polarization properties of harmonics from the cyclic H32+ molecular ions in tailored bichromatic counter-rotating circularly polarized (BCCP) fields by solving the time-dependent Schrödinger equation. The allowed harmonics and their helicities are associated with the symmetry compatibility of the field-target systems, and large intensity difference between adjacent harmonics with opposite helicities appears in a wide spectral range when the BCCP field is at certain rotation angles. We try to explain the intensity difference by using a recombination model based on the quantum-orbit theory and by analyzing the ionization pathways. Moreover, to synthesize attosecond pulse trains with tunable polarization, the intensity difference is manipulated by introducing a seed XUV field, and by changing the relative amplitude ratio as well as the helicity of BCCP fields.
(Ultrafast processes; optical pulse generation and pulse compression)
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 91950117) and the Fundamental Research Funds for the Central Universities.
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬) Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields 2024 Chin. Phys. B 33 023301
[1] Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S and Nisoli M 2006 Science314 443 [2] Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G and Agostini P 2001 Science292 1689 [3] Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M and Zhao Z X 2020 Chin. Phys. Lett.37 023201 [4] Xia C L and Miao X Y 2015 Chin. Phys. Lett.32 043202 [5] Zhou X, Lock R, Wagner N, Li W, Kapteyn H C and Murnane M M 2009 Phys. Rev. Lett.102 073902 [6] Huang P C, Hernández-García C, Huang J T, Huang P Y, Lu C H, Rego L, Hickstein D D, Ellis J L, Jaron-Becker A, Becker A, Yang S D, Durfee C G, Plaja L, Kapteyn H C, Murnane M M, Kung A H and Chen M C 2018 Nat. Photon.12 349 [7] Sun F J, Chen C, Li W Y, Liu X, Li W and Chen Y J 2021 Phys. Rev. A103 053108 [8] Huo X X, Wang S, Sun L, Xing Y H, Zhang J and Liu X S 2022 Phys. Rev. A106 023102 [9] Zhai C, Shao R, Lan P, Wang B, Zhang Y, Yuan H, Njoroge S M, He L and Lu P 2020 Phys. Rev. A101 053407 [10] Zhai C, Wu Y, Qin L, Li X, Shi L, Zhang K, Kang S, Li Z, Li Y, Tang Q and Yu B 2023 Chin. Phys. B32 073301 [11] Habibović D, Becker W and Milošević D B 2022 Phys. Rev. A106 023119 [12] Qiao Y, Wu D, Chen J G, Wang J, Guo F M and Yang Y J 2019 Phys. Rev. A100 063428 [13] Baykusheva D, Brennecke S, Lein M and Wörner H J 2017 Phys. Rev. Lett.119 203201 [14] Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M and Cohen O 2015 Nat. Photon.9 99 [15] Rajpoot R, Holkundkar A R and Bandyopadhyay J N 2021 J. Phys. B: At. Mol. Opt. Phys.54 225401 [16] Medišauskas L, Wragg J, van der Hart H and Ivanov M Y 2015 Phys. Rev. Lett.115 153001 [17] Jiménez-Galán Á, Zhavoronkov N, Ayuso D, Morales F, Patchkovskii S, Schloz M, Pisanty E, Smirnova O and Ivanov M 2018 Phys. Rev. A97 023409 [18] Dixit G, Jiménez-Galán Á, Medišauskas L and Ivanov M 2018 Phys. Rev. A98 053402 [19] Li M Z, Xu Y, Jia G R and Bian X B 2019 Phys. Rev. A100 033410 [20] Yuan K J and Bandrauk A D 2019 Phys. Rev. A100 033420 [21] Liu X, Zhu X, Li L, Li Y, Zhang Q, Lan P and Lu P 2016 Phys. Rev. A94 033410 [22] Wang D, Zhu X, Yuan H, Lan P and Lu P 2020 Phys. Rev. A101 023406 [23] Bandrauk A D, Mauger F and Yuan K J 2016 J. Phys. B: At. Mol. Opt. Phys.49 23LT01 [24] Mauger F, Bandrauk A D and Uzer T 2016 J. Phys. B: At. Mol. Opt. Phys.49 10LT01 [25] Yuan K J, Chelkowski S and Bandrauk A D 2021 J. Phys. Chem. A125 7111 [26] Neufeld O and Cohen O 2019 Phys. Rev. Lett.123 103202 [27] Zhou S, Li Q, Guo F, Wang J, Chen J and Yang Y 2021 Chem. Phys.545 111147 [28] Lei Z X, Yan S J, Hao X Y, Ma P, Zhou S P and Guo J 2023 Commun. Theor. Phys.75 065501 [29] Baykusheva D, Ahsan M S, Lin N and Wörner H J 2016 Phys. Rev. Lett.116 123001 [30] Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys.47 412 [31] Odžak S and Milošević D B 2015 Phys. Rev. A92 053416 [32] Zhang X, Li L, Zhu X, Liu X, Zhang Q, Lan P and Lu P 2016 Phys. Rev. A94 053408 [33] Barreau L, Veyrinas K, Gruson V, Weber S J, Auguste T, Hergott J F, Lepetit F, Carré B, Houver J C, Dowek D and Saliéres P 2018 Nat. Commun.9 4727 [34] Yuan K J and Bandrauk A D 2020 Phys. Chem. Chem. Phys.22 325 [35] Zhang B and Lein M 2019 Phys. Rev. A100 043401 [36] Milošević D B 2015 Opt. Lett.40 2381 [37] Bertrand J B, Wörner H J, Bandulet H C, Bisson É, Spanner M, Kieffer J C, Villeneuve D M and Corkum P B 2011 Phys. Rev. Lett.106 023001 [38] Zhang S Q, Zhang B, Jiang X Q and Sun X D 2023 J. Phys. B: At. Mol. Opt. Phys.56 105603
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.