Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020702    DOI: 10.1088/1674-1056/ad09cf
GENERAL Prev   Next  

Fast compressed sensing spectral measurement with adaptive gradient multiscale resolution

Ruo-Ming Lan(蓝若明)1,†, Xue-Feng Liu(刘雪峰)2,‡, Tian-Ping Li(李天平)1, and Cheng-Jie Bai(白成杰)1
1 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We propose a fast, adaptive multiscale resolution spectral measurement method based on compressed sensing. The method can apply variable measurement resolution over the entire spectral range to reduce the measurement time by over 75% compared to a global high-resolution measurement. Mimicking the characteristics of the human retina system, the resolution distribution follows the principle of gradually decreasing. The system allows the spectral peaks of interest to be captured dynamically or to be specified a priori by a user. The system was tested by measuring single and dual spectral peaks, and the results of spectral peaks are consistent with those of global high-resolution measurements.
Keywords:  spectrometer      compressed sensing      adaptive gradient multiscale resolution      fast measurement  
Received:  05 September 2023      Revised:  26 October 2023      Accepted manuscript online:  06 November 2023
PACS:  07.60.Rd (Visible and ultraviolet spectrometers)  
  42.30.-d (Imaging and optical processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020MF119 and ZR2020MA082), the National Natural Science Foundation of China (Grant No. 62002208), and the National Key Research and Development Program of China (Grant No. 2018YFB0504302).
Corresponding Authors:  Ruo-Ming Lan, Xue-Feng Liu     E-mail:  lanrm0616@163.com;liuxuefeng@nssc.ac.cn

Cite this article: 

Ruo-Ming Lan(蓝若明), Xue-Feng Liu(刘雪峰), Tian-Ping Li(李天平), and Cheng-Jie Bai(白成杰) Fast compressed sensing spectral measurement with adaptive gradient multiscale resolution 2024 Chin. Phys. B 33 020702

[1] Lu Z F, Zhang J H, Liu H, Xu J L and Li J H 2019 Micromachines 10 149
[2] Tilotta D C and Zhou Z 1995 Appl. Spectrosc. 49 1338
[3] Wang X D, Liu H, Lu Z W, Song L W, Wang T S, Dang B S, Quan X Q and Li Y P 2014 Opt. Commun. 333 80
[4] Kim C, Park D and Lee H N 2020 Sensors 20 594
[5] Gamez G 2016 J. Anal. Atom. Spectrom. 31 2165
[6] Zhang R, Ren W Y, Xu Z L, Wang H, Jiang J G, Wang Y Y and Luo X 2021 Optik 240 166813
[7] Harwit J V and Slone J G 1979 Hadamard Transform Optics (New York: Academic Press) p. 112
[8] Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289
[9] Candés E J 2006 Proceedings of the International Congress of Mathematicians, August 22-30, 2006, Madrid, Spain Vol. 17 p. 1433
[10] Candés E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21
[11] Yu W K, Li M F, Yao X R, Liu X F, Wu L A and Zhai G J 2014 Opt. Express 22 7133
[12] Aβmann M and Bayer M 2013 Sci. Rep. 3 1545
[13] Svanberg S and Metcalf H 1992 Am. J. Phys. 60 285
[14] Lan R M, Liu X F, Yao X Y, Bai C J, Zhao Y F and Zhao L N 2021 Opt. Commun. 479 126447
[15] Candés E J, Romberg J and Tao T 2005 Commun. Pure Appl. Math 59 1207
[16] Candés E J 2008 C. R. Math. 346 589
[17] Johnson J 2010 Designing with the Mind in Mind (Amsterdam: Elsevier) p. 65
[18] Weale R A 1966 Nature 212 255
[19] Yin F, Meng Y Z, Yang Q, Kai L, Liu Y, Hou X, Lu Y and Chen F 2022 Opt. Mater. Express 12 4435
[20] Lerner J M and Thevenon A 1992 The optics of spectroscopy (Instruments SA, Inc.) p. 1198
[21] Dudley D, Duncan W M and Slaughter J 2003 Proc. SPIE 4985
[22] Lan R M, Liu X F, Yao X Y, Yu W K, and Zhai G J 2016 Opt. Commun. 366 349
[1] Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350 eV to 8000 eV
Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2024, 33(4): 043401.
[2] Design and calibration of an elliptical crystal spectrometer for the diagnosis of proton-induced x-ray emission (PIXE)
Yanlyu Fang(方言律), Dongyu Li(李东彧), Hao Cheng(程浩), Yuan Gao(高原), Ze-Qing Shen(申泽清), Tong Yang(杨童), Yu-Ze Li(李昱泽), Ya-Dong Xia(夏亚东), Yang Yan(晏炀), Sha Yan(颜莎), Chen Lin(林晨), and Xue-Qing Yan(颜学庆). Chin. Phys. B, 2023, 32(11): 110703.
[3] Single exposure passive three-dimensional information reconstruction based on an ordinary imaging system
Shen-Cheng Dou(窦申成), Fan Liu(刘璠), Hu Li(李虎), Xu-Ri Yao(姚旭日), Xue-Feng Liu(刘雪峰), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2023, 32(11): 114204.
[4] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[5] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[6] Identification of denatured and normal biological tissues based on compressed sensing and refined composite multi-scale fuzzy entropy during high intensity focused ultrasound treatment
Shang-Qu Yan(颜上取), Han Zhang(张含), Bei Liu(刘备), Hao Tang(汤昊), and Sheng-You Qian(钱盛友). Chin. Phys. B, 2021, 30(2): 028704.
[7] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[8] Compressive imaging based on multi-scale modulation and reconstruction in spatial frequency domain
Fan Liu(刘璠), Xue-Feng Liu(刘雪峰), Ruo-Ming Lan(蓝若明), Xu-Ri Yao(姚旭日), Shen-Cheng Dou(窦申成), Xiao-Qing Wang(王小庆), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2021, 30(1): 014208.
[9] Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser
Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明). Chin. Phys. B, 2020, 29(8): 084101.
[10] An image compressed sensing algorithm based on adaptive nonlinear network
Yuan Guo(郭媛), Wei Chen(陈炜), Shi-Wei Jing(敬世伟). Chin. Phys. B, 2020, 29(5): 054203.
[11] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[12] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[13] Calibration and data restoration of light field modulated imaging spectrometer
Li-Juan Su(苏丽娟), Qiang-Qiang Yan(严强强), Yan Yuan(袁艳), Shi-Feng Wang(王世丰), Yu-Jian Liu(刘宇健). Chin. Phys. B, 2018, 27(8): 080702.
[14] A rapid and convenient experimental method of absolutely calibrating transmission of x-ray flat-response filter
Jian Yu(余建), Li-Fei Hou(候立飞), Jing Wang(王静), Wen-Hai Zhang(张文海), Ming Chen(陈铭), Bao-Chong Zhou(周保充), Sha-Li Xiao(肖沙里), Shen-Ye Liu(刘慎业). Chin. Phys. B, 2018, 27(10): 100702.
[15] Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method
Yuan Liu(刘园), Xiang Wang(王翔), Jie Zhu(朱杰), Runsheng Huang(黄润生), Dongming Tang(唐东明). Chin. Phys. B, 2017, 26(5): 057501.
No Suggested Reading articles found!