Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 026801    DOI: 10.1088/1674-1056/ace61e
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of surface modification on the radiation stability of diamond ohmic contacts

Lian-Xi Mu(牟恋希)1, Shang-Man Zhao(赵上熳)1, Peng Wang(王鹏)1, Xiao-Lu Yuan(原晓芦)2, Jin-Long Liu(刘金龙)1,†, Zhi-Fu Zhu(朱志甫)3, Liang-Xian Chen(陈良贤)1, Jun-Jun Wei(魏俊俊)1, Xiao-Ping Ou-Yang(欧阳晓平)4, and Cheng-Ming Li(李成明)1,‡
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
3 School of Information Engineering, Zhengzhou University of Technology, Zhengzhou 450044, China;
4 State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  The ohmic contact interface between diamond and metal is essential for the application of diamond detectors. Surface modification can significantly affect the contact performance and eliminate the interface polarization effect. However, the radiation stability of a diamond detector is also sensitive to surface modification. In this work, the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated. Before radiation, the specific contact resistivities ($\rho_{\rm c}$) between Ti/Pt/Au-hydrogen-terminated diamond (H-diamond) and Ti/Pt/Au-oxygen-terminated diamond (O-diamond) were $2.0 \times 10^{-4}$ $\Omega \cdot $cm$^{2}$ and $4.3 \times 10^{-3}$ $\Omega \cdot $cm$^{2}$, respectively. After 10 MeV electron radiation, the $\rho_{\rm c}$ of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were $5.3 \times 10^{-3}$ $\Omega \cdot $cm$^{2}$ and $9.1 \times 10^{-3}$ $ \Omega \cdot $cm$^{2}$, respectively. The rates of change of $\rho_{\rm c}$ of H-diamond and O-diamond after radiation were 2550% and 112%, respectively. The electron radiation promotes bond reconstruction of the diamond surface, resulting in an increase in $\rho_{\rm c}$.
Keywords:  single crystal diamond      ohmic contact      surface modification      electron radiation  
Received:  13 May 2023      Revised:  29 June 2023      Accepted manuscript online:  11 July 2023
PACS:  68.47.Fg (Semiconductor surfaces)  
  71.55.Cn (Elemental semiconductors)  
  73.40.Cg (Contact resistance, contact potential)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3608601).
Corresponding Authors:  Jin-Long Liu, Cheng-Ming Li     E-mail:  liujinlong@ustb.edu.cn;chengmli@mater.ustb.edu.cn

Cite this article: 

Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明) Effect of surface modification on the radiation stability of diamond ohmic contacts 2024 Chin. Phys. B 33 026801

[1] Verona C, Ciccognani W, Colangeli S, Limiti E, Marinelli M, Santoni E, Verona-Rinati G, Angelone M, Pillon M, Pompili F, Benetti M, Cannata D and Di Pietrantonio F 2016 IEEE Electron Dev. Lett. 37 1597
[2] Yamaguchi T, Umezawa H, Ohmagari S, Koizumi H and Kaneko JH 2021 Appl. Phys. Lett. 118 162105
[3] Esposito B, Marocco D, Gandolfo G, et al. 2022 J. Fusion Energy 41 22
[4] Qu Y F, Zang L G, Chen W, Hou Y M, Lu J and Luo Y 2022 Rev. Sci. Instrum. 93 113507
[5] Zhang Z F, Lin C N, Yang X, Tian Y Z, Gao C J, Li K Y, Zang J H, Yang X G, Dong L and Shan C X 2021 Carbon 173 427
[6] Girolami M, Serpente V, Mastellone M, Tardocchi M, Rebai M, Xiu, Q L, Liu J L, Sun Z J, Zhao Y B, Valentini V and Trucchi D M 2022 Carbon 189 27
[7] Galbiati A, Lynn S, Oliver K, Schirru F, Nowak T, Marczewska B, Duenas J A, Berjillos R, Martel I and Lavergne L 2009 IEEE Transactions on Nuclear Science 56 1863
[8] Wang J C, Chen H, Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q D, Li A L and Li H D 2021 Chin. Phys. B 30 096803
[9] Su K, Pen Z Y, Zhang J F, Liu L Y, Zhang J C, Zhang Y C, He Q, Zhang C F, Ouyang X P and Hao Y 2020 Appl. Phys. Lett. 116 092104
[10] Okhapkin A I, Yunin P A, Arkhipova E A, Kraev S A, Korolyov S A, Drozdov M N and Shashkin V I 2020 Semiconductors 54 1056
[11] Hoffman A, Laikhtman A, Ustaze S, Hamou M H, Hedhili M N, Guillotin J P, Le Coat Y and Azria R 2002 J. Appl. Phys. 91 4726
[12] Grilj V, Skukan N, Jaksic M, Pomorski M, Kada W, Kamiya T and Ohshima T 2016 Nucl. Instrum. Meth. B 372 161
[13] Ade N, Nam T L, Derry T E and Mhlanga S H 2014 Radiat. Phys. Chem. 98 155
[14] Hoshino Y, Saito Y and Nakata J 2010 J. Appl. Phys. 49 101302
[15] Bergman L and Nemanich R J 1995 J. Appl. Phys. 78 6709
[16] Lee E H, Hembree D M, Rao G R and Mansur L K 1993 Phys. Rev. B 48 15540
[17] Ostrovskaya L, Perevertailo V, Ralchenko V, Dementjev A and Loginova O 2002 Diam. Relat. Mater. 11 845
[18] Tu J L, Shi J D, Chen L X, Liu J L, Li C M and Wei J J 2022 Int. J. Heat Mass Transfer 199 123481
[19] Kawarada H 1996 Surf. Sci. Rep. 26 205
[20] Berger H H 1972 Solid-State Electronics 15 145
[21] Zhao D, Li F N, Liu Z C, Chen X D, Wang Y F, Shao G Q, Zhu T F, Zhang M H, Zhang J W, Wang J J, Wang W and Wang H X 2018 Appl. Surf. Sci. 443 361
[22] Chen Y G, Ogura A, Yamasaki S and Okushi H 2004 Diam. Relat. Mater. 13 2121
[23] Hirama K, Takayanagi H, Yamauchi S, Yang J H, Kawarada H and Umezawa H 2008 Appl. Phys. Lett. 92 112107
[24] Sauerer C, Ertl F, Nebel C E, Stutzmann M, Bergonzo P, Williams O A and Jackman R A 2001 Phys. Status Solidi A 186 241
[25] Strobel P, Riedel M, Ristein J and Ley L 2004 Nature 430 439
[26] Edmonds M T, Pakes C I, Mammadov S, Zhang W, Tadich A, Ristein J and Ley L 2011 Phys. Status Solidi A 208 2062
[27] Maier F, Riedel M, Ristein J and Ley L 2001 Diam. Relat. Mater. 10 506
[28] Kono S, Saitou T, Kawata H, Goto T, Kakefuda Y and Komeda T 2009 Surf. Sci. 603 860
[29] Maier F, Ristein J and Ley L 2001 Phys. Rev. B 64 165411
[30] Zhang S, Liu K, Liu B J, Zhang X H, Qiao P F, Zhao J W, Li Y C, Hao X B, Liang Y, Liang B, Zhang W C, Dai B, Han J C and Zhu J Q 2023 Carbon 205 69
[31] Foord J S, Hian L C and Jackman R B 2001 Diam. Relat. Mater. 10 710
[32] Bai M J, Liu J L, Jiang H, Li W J, Wei J J, Chen L X, Miao J Y and Li C M 2022 Tribol. Int. 176 107910
[33] Wei K T, Li J, Liu B Y, Wu R R, Wei Q, Wu S L, Hu W B and Wang H X 2019 Vacuum 172 109046
[1] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[4] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[5] Developing cold-resistant high-adhesive electronic substrate for WIMPs detectors at CDEX
Yuanyuan Liu(刘圆圆), Jianping Cheng(程建平), Pan Pang(庞盼), Bin Liao(廖斌), Bin Wu(吴彬), Minju Ying(英敏菊), Fengshou Zhang(张丰收), Lin Chen(陈琳), Shasha Lv(吕沙沙), Yandong Liu(刘言东), Tianxi Sun(孙天希). Chin. Phys. B, 2020, 29(4): 045203.
[6] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[7] Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景). Chin. Phys. B, 2018, 27(11): 117806.
[8] Synthesis of N-type semiconductor diamonds with sulfur, boron co-doping in FeNiMnCo-C system at high pressure and high temperature
He Zhang(张贺), Shangsheng Li(李尚升), Taichao Su(宿太超), Meihua Hu(胡美华), Hongan Ma(马红安), Xiaopeng Jia(贾晓鹏), Yong Li(李勇). Chin. Phys. B, 2017, 26(5): 058102.
[9] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[10] Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays
Ren-Wu Zhou(周仁武), Ru-Sen Zhou(周儒森), Jin-Xing Zhuang(庄金星), Jiang-Wei Li(李江炜), Mao-Dong Chen(陈茂冬), Xian-Hui Zhang(张先徽), Dong-Ping Liu(刘东平), Kostya (Ken) Ostrikov, Si-Ze Yang(杨思泽). Chin. Phys. B, 2016, 25(4): 045202.
[11] Influence of a deep-level-defect band formed in a heavily Mg-doped GaN contact layer on the Ni/Au contact to p-GaN
Li Xiao-Jing (李晓静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Chen Ping (陈平), Zhu Jian-Jun (朱建军), Liu Zong-Shun (刘宗顺), Le Ling-Cong (乐伶聪), Yang Jing (杨静), He Xiao-Guang (何晓光), Zhang Li-Qun (张立群), Liu Jian-Ping (刘建平), Zhang Shu-Ming (张书明), Yang Hui (杨辉). Chin. Phys. B, 2015, 24(9): 096804.
[12] Electrical properties and microstructural characterization of Ni/Ta contacts to n-type 6H-SiC
Zhou Tian-Yu (周天宇), Liu Xue-Chao (刘学超), Huang Wei (黄维), Zhuo Shi-Yi (卓世异), Zheng Yan-Qing (郑燕青), Shi Er-Wei (施尔畏). Chin. Phys. B, 2015, 24(12): 126801.
[13] Low contact resistivity between Ni/Au and p-GaN through thin heavily Mg-doped p-GaN and p-InGaN compound contact layer
Li Xiao-Jing (李晓静), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Chen Ping (陈平), Zhu Jian-Jun (朱建军), Liu Zong-Shun (刘宗顺), Le Ling-Cong (乐伶聪), Yang Jing (杨静), He Xiao-Guang (何晓光). Chin. Phys. B, 2015, 24(11): 116803.
[14] Low specific contact resistance on epitaxial p-type 4H-SiC with a step-bunching surface
Han Chao (韩超), Zhang Yu-Ming (张玉明), Song Qing-Wen (宋庆文), Tang Xiao-Yan (汤晓燕), Zhang Yi-Men (张义门), Guo Hui (郭辉), Wang Yue-Hu (王悦湖). Chin. Phys. B, 2015, 24(11): 117304.
[15] Effect of the annealing temperature on the long-term thermal stability of Pt/Si/Ta/Ti/4H-SiC contacts
Cheng Yue (程越), Zhao Gao-Jie (赵高杰), Liu Yi-Hong (刘益宏), Sun Yu-Jun (孙玉俊), Wang Tao (王涛), Chen Zhi-Zhan (陈之战). Chin. Phys. B, 2015, 24(10): 107303.
No Suggested Reading articles found!