Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 108103    DOI: 10.1088/1674-1056/acd2b3
RAPID COMMUNICATION Prev   Next  

Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling

Xiaofan Yu(于小凡)1,2,†, Yangwu Tong(童洋武)1,2,†, and Yong Yang(杨勇)1,2,‡
1 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
Abstract  The activation and dissociation of hydrogen molecules (H2) on the Cu(001) surface are studied theoretically. Using first-principles calculations, the activation barrier for the dissociation of H2 on Cu(001) is determined to be ~ 0.59 eV in height. It is found that the electron transfer from the copper substrate to H2 plays a key role in the activation and breaking of the H-H bond, and the formation of the Cu-H bonds. Two stationary states are identified at around the critical height of bond breaking, corresponding to the molecular and the dissociative states, respectively. Using the transfer matrix method, we also investigate the role of quantum tunneling in the dissociation process along the minimum energy pathway (MEP), which is found to be significant at or below room temperature. At a given temperature, the tunneling contributions due to the translational and the vibrational motions of H2 are quantified for the dissociation process. Within a wide range of temperature, the effects of quantum tunneling on the effective barriers of dissociation and the rate constants are observed. The deduced energetic parameters associated with the thermal equilibrium and non-equilibrium (molecular beam) conditions are comparable to experimental data. In the low-temperature region, the crossover from classical to quantum regime is identified.
Keywords:  H2      Cu(001)      dissociation      quantum tunneling      density functional theory (DFT)      transfer matrix method  
Received:  28 February 2023      Revised:  30 April 2023      Accepted manuscript online:  05 May 2023
PACS:  82.37.Np (Single molecule reaction kinetics, dissociation, etc.)  
  82.65.+r (Surface and interface chemistry; heterogeneous catalysis at surfaces)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  66.35.+a (Quantum tunneling of defects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474285 and 12074382). We are grateful to the staffs at the Hefei Branch of Supercomputing Center of Chinese Academy of Sciences, and the Hefei Advanced Computing Center for the support of supercomputing facilities.
Corresponding Authors:  Yong Yang     E-mail:  yyanglab@issp.ac.cn

Cite this article: 

Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇) Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling 2023 Chin. Phys. B 32 108103

[1] Swart I, de Groot F M F, Weckhuysen B M, Gruene P, Meijer G and Fielicke A 2008 J. Phys. Chem. A 112 1139
[2] Lyu J Z, Andrey M L and Viktor N K 2019 Chin. Phys. B 28 098801
[3] Wang Y L, Chen Y H and Wang Y H 2020 Chin. Phys. B. 29 016801
[4] Salmeron M, Gale R J and Somorjai G A 1977 J. Chem. Phys. 67 5324
[5] Kang H C and Weinberg W H 1995 Chem. Rev. 95 667
[6] Anger G, Winkler A and Rendulic K D 1989 Surf. Sci. 220 1
[7] Besocke K, Krahl-Urban B and Wagner H 1977 Surf. Sci. 68 39
[8] Behm R J, Christmann K and Ertl G 1980 Surf. Sci. 99 320
[9] Jardin J P, Desjonquéres M C and Spanjaard D 1985 Surf. Sci. 162 224
[10] Balooch M, Cardillo M J, Miller D R and Stickney R E 1974 Surf. Sci. 46 358
[11] Tersoff J and Falicov L M 1981 Phys. Rev. B 24 754
[12] Shen X, Li Y, Liu X, Zhang D, Gao J and Liang T 2017 Phys. Chem. Chem. Phys. 19 3557
[13] Ferrin P, Kandoi S, Nilekar A U and Mavrikakis M 2012 Surf. Sci. 606 679
[14] Alexander C S and Pritchard J 1972 J. Chem. Soc., Faraday Trans. 1 68 202
[15] Rasmussen P B, Holmblad P M, Christoffersen H, Taylor P A and Chorkendorff I 1993 Surf. Sci. 287 79
[16] Sun Q, Xie J J and Zhang T 1995 Surf. Sci. 338 11
[17] Xie J J, Jiang P and Zhang K M 1994 J. Phys.: Condens. Matter 6 7217
[18] Xie J J, Jiang P and Zhang K M 1996 J. Chem. Phys. 104 9994
[19] Somers M F, McCormack D A, Kroes G J, Olsen R A, Baerends E J and Mowrey R C 2002 J. Chem. Phys. 117 6673
[20] Christmann K, Ertl G and Pignet T 1976 Surf. Sci. 54 365
[21] Hennig D, Wilke S, Löber R and Methfessel M 1993 Surf. Sci. 287 89
[22] Payne S H, Kreuzer H J, Frie W, Hammer L and Heinz K 1999 Surf. Sci. 421 279
[23] Smeets E W F, Voss J and Kroes G J 2019 J. Phys. Chem. A 123 5395
[24] Harris J and Andersson S 1985 Phys. Rev. Lett. 55 1583
[25] Harris J 1988 Appl. Phys. A 47 63
[26] Halstead D and Holloway S 1988 J. Chem. Phys. 88 7197
[27] Halstead D and Holloway S 1990 J. Chem. Phys. 93 2859
[28] Nielsen U, Halstead D and Holloway S 1990 J. Chem. Phys. 93 2879
[29] Darling G R and Holloway S 1994 J. Chem. Phys. 101 3268
[30] Brenig W 1994 Phys. Rev. Lett. 73 3121
[31] Kinnersley A D, Darling G R, Holloway S and Hammer B 1996 Surf. Sci. 364 219
[32] Wang Z S, Darling G R and Holloway S 2000 Surf. Sci. 458 63
[33] Dai J and Light J C 1997 J. Chem. Phys. 107 1676
[34] Dai J and Light J C 1998 J. Chem. Phys. 108 7816
[35] Miura Y, Kasai H and Diño W A 2002 J. Phys.: Condens. Matter. 14 L479
[36] Wiesenekker G, Kroes G J and Baerends E J 1996 J. Chem. Phys. 104 7344
[37] Kroes G J, Baerends E J and Mowrey R C 1997 Phys. Rev. Lett. 78 5383
[38] Kroes G J, Baerends E J and Mowrey R C 1997 J. Chem. Phys. 107 3309
[39] McCormack D A, Kroes G J, Olsen R A, Baerends E J and Mowrey R C 1999 J. Chem. Phys. 110 7008
[40] McCormack D A, Kroes G J, Olsen R A, Baerends E J and Mowrey R C 1999 Phys. Rev. Lett. 82 1410
[41] Olsen R A, Busnengo H F, Salin A, Somers M F, Kroes G J and Baerends E J 2002 J. Chem. Phys. 116 3841
[42] Díaz C, Pijper E, Olsen R A, Busnengo H F, Auerbach D J and Kroes G J 2009 Science 326 832
[43] Sementa L, Wijzenbroek M, van Kolck B J, Somers M F, Al-Halabi A, Busnengo H F, Olsen R A, Kroes G J, Rutkowski M, Thewes C, Kleimeier N F and Zacharias H 2013 J. Chem. Phys. 138 044708
[44] Marashdeh A, Casolo S, Sementa L, Zacharias H and Kroes G J 2013 J. Phys. Chem. C 117 8851
[45] Kroes G J 2015 J. Phys. Chem. Lett. 6 4106
[46] Sharada S M, Bligaard T, Luntz A C, Kroes G J and Norskov J K 2017 J. Phys. Chem. C 121 19807
[47] Kroes G J 2021 Phys. Chem. Chem. Phys. 23 8962
[48] Jiang B and Guo H 2014 J. Chem. Phys. 141 034109
[49] Zhu L J, Zhang Y L, Zhang L, Zhou X Y and Jiang B 2020 Phys. Chem. Chem. Phys. 22 13958
[50] Lv S S, Liu X J and Shen X J 2022 Surf. Sci. 718 122015
[51] Markland T E and Ceriotti M 2018 Nat. Rev. Chem. 2 0109
[52] Ceriotti M, Fang W, Kusalik P G, McKenzie R H, Michaelides A, Morales M A and Markland T E 2016 Chem. Rev. 116 7529
[53] Yang Y and Kawazoe Y 2019 J. Phys. Chem. C 123 13804
[54] Bi C and Yang Y 2021 J. Phys. Chem. C 125 464
[55] Schreiner P R 2020 Trends Chem. 2 980
[56] Meisner J and Kästner J 2016 Angew. Chem. Int. Ed. 55 5400
[57] Tierney H L, Baber A E, Kitchin J R and Sykes E C H 2009 Phys. Rev. Lett. 103 246102
[58] Kyriakou G, Davidson E R M, Peng G, Roling L T, Singh S, Boucher M B, Marcinkowski M D, Mavrikakis M, Michaelides A and Sykes E C H 2014 ACS Nano 8 4827
[59] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[60] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[61] Perdew J P 1986 Phys. Rev. B 34 7406
[62] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[63] Blöchl P E 1994 Phys. Rev. B 50 17953
[64] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[65] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[66] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[67] Baroni S and Resta R 1986 Phys. Rev. B 33 7017
[68] Schiff L I 1968 Quantum Mechanics (New York: McGraw-Hill) p. 268
[69] Bell R P 1980 The Tunnel Effect in Chemistry (London: Chapman and Hall)
[70] Chen B W J and Mavrikakis M 2020 Catal. Sci. Technol. 10 671
[71] Yu M and Trinkle D R 2011 J. Chem. Phys. 134 064111
[72] Ebrahimi M, Guo S Y, McNab I R and Polanyi J C 2010 J. Phys. Chem. Lett. 1 2600
[73] Yang Y, Meng S and Wang E G 2006 J. Phys.: Condens. Matter 18 10165
[74] Luo Y R 2005 Experimental Data of Chemical Bond Energies (Beijing: Science Press) p. 4
[75] Chapman S, Garrett B C and Miller W H 1975 J. Chem. Phys. 63 2710
[76] Marcus R A and Coltrin M E 1977 J. Chem. Phys. 67 2609
[77] Garrett B C and Truhlar D G 1983 J. Chem. Phys. 79 4931
[78] Han E, Fang W, Stamatakis M, Richardson J O and Chen J 2022 J. Phys. Chem. Lett. 13 3173
[79] Cheng Y H, Zhu Y C, Li X Z and Fang W 2023 Chin. Phys. B 32 018201
[80] Büttiker M and Landauer R 1982 Phys. Rev. Lett. 49 1739
[81] Wang Z C 2000 Thermodynamics Statistical Physics, 3rd Ed. (Beijing: Higher Education Press) pp. 271-273
[82] Lauhon L J and Ho W 2000 Phys. Rev. Lett. 85 4566
[83] Sundell P G and Wahnström G 2004 Phys. Rev. B 70 081403
[84] Zheng C Z, Yeung C K, Loy M M and Xiao X 2006 Phys. Rev. Lett. 97 166101
[85] Cao G X, Nabighian E and Zhu X D 1997 Phys. Rev. Lett. 79 3696
[1] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[2] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[5] Local density of optical states calculated by the mode spectrum in stratified media
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华). Chin. Phys. B, 2023, 32(4): 040204.
[6] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[7] Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
Zhi-Yuan Li(李志远) and Jian-Feng Chen(陈剑锋). Chin. Phys. B, 2023, 32(10): 104211.
[8] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[9] Nuclear dissociation after the O 1s $\rightarrow (^4\Sigma_\text{u}^-)$3sσ excitation in O$_2$ molecules
Bocheng Ding(丁伯承), Ruichang Wu(吴睿昌), Yunfei Feng(封云飞), and Xiaojing Liu(刘小井). Chin. Phys. B, 2022, 31(8): 083301.
[10] Oscillator strength study of the excitations of valence-shell of C2H2 by high-resolution inelastic x-ray scattering
Qiang Sun(孙强), Ya-Wei Liu(刘亚伟), Yuan-Chen Xu(徐远琛), Li-Han Wang(王礼涵), Tian-Jun Li(李天钧), Shu-Xing Wang(汪书兴), Ke Yang(杨科), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(5): 053401.
[11] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[12] Quantum and quasiclassical dynamics of C($^{3} P$) + H$_{2}(^{1} \varSigma_{\text{g}}^+)\rightarrow H(^{2} S)$ + CH($^{2} \varPi$) reaction: Coriolis coupling effects and stereodynamics
Dong Liu(刘栋), Lulu Zhang(张路路), Juan Zhao(赵娟), Qin Zhang(张芹), Yuzhi Song(宋玉志), and Qingtian Meng(孟庆田). Chin. Phys. B, 2022, 31(4): 043102.
[13] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[14] Ultrafast Coulomb explosion imaging of molecules and molecular clusters
Xiaokai Li(李孝开), Xitao Yu(余西涛), Pan Ma(马盼), Xinning Zhao(赵欣宁), Chuncheng Wang(王春成), Sizuo Luo(罗嗣佐), and Dajun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103304.
[15] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
No Suggested Reading articles found!